1) Weierstrass and Jacobi elliptic function
Weierstrass和Jacobi椭圆函数
3) Jacobi elliptic functions
Jacobi椭圆函数
1.
Some new exact solutions of the Jacobi elliptic functions of NLS equation;
非线性薛定谔方程的Jacobi椭圆函数解
2.
Using Jacobi elliptic functions expansion method and a modified Hyperbolic-Tan function method,homogenous balancing method,construct the exact solution of nonlinear evolution equations;then using Mathematica software,the solitary wave solutions of the kind of nonlinear evoluation equations are obtained successfully.
利用Jacobi椭圆函数展开法和双曲正切法,结合齐次平衡法构造非线性偏微分方程的精确解,并利用计算机代数系统Mathematica,求得一类非线性发展方程的孤立波解。
3.
By using Mathematica and the F-expansion method recently proposed on the base of analogic method,homogeneous balance method and Jacobi method,the double periodic wave solutions expressed by Jacobi elliptic functions for the(n+1)-dimensional Sinh-Gordon equation .
然后由行波约化将其常微分方程化,在拟设法、齐次平衡法和Jacobi椭圆函数法的基础上,借助Mathematica软件和新近提出的F-展开法,求出并研究了(n+1)维SG方程的Jacobi椭圆函数表示的双周期波解,分析了解的结构,在极限情况下这些解退化为相应的孤立波解、三角函数解和奇异行波解。
4) Jacobi elliptic function
Jacobi椭圆函数
1.
Exact solutions of jacobi elliptic function for boussinesq equation;
Boussinesq方程的Jacobi椭圆函数精确解
2.
Jacobi elliptic function envelope solutions of nonlinear Schringer equation;
非线性Schringer方程的Jacobi椭圆函数包络解
3.
A solution of a nonlinear simple pendulum using Jacobi elliptic function;
非线性单摆的Jacobi椭圆函数解
5) Jacobian elliptic function
Jacobi椭圆函数
1.
A coupled KdV system was solved by using the generalized Jacobian elliptic function expansion method.
运用秩的概念将微分方程式在行波变换下的Jacobi椭圆函数展开法进行推广,应用到非线性发展方程组的求解中。
2.
Its exact trave l ing wave solutions, which included rational form solutions, solitary wave soluti ons, triangle function periodic solutions, polynomial type Jacobian elliptic fun ction periodic solutions and fractional type Jacobian elliptic function periodic solutions, were given.
以一个带5阶导数项的非线性发展方程为例,利用试探方程法化成初等积分形式,再利用三阶多项式的完全判别系统求解,由此求得的精确解包括有理函数型解,孤波解,三角函数型周期解,多项式型Jacobi椭圆函数周期解和分式型Jacobi椭圆函数周期解。
6) Weierstrass elliptic function solutions
Weierstrass椭圆函数解
1.
Weierstrass elliptic function solutions to Time Dependent Ginzburg-Landau equation;
Time Dependent Ginzburg-Landau方程的Weierstrass椭圆函数解
2.
A new method to construct Weierstrass elliptic function solutions for soliton equations;
构造孤子方程的Weierstrass椭圆函数解的一个新方法
补充资料:We
分子式:
CAS号:
性质:用来研究流体力学的一个准数,其表示式为。式中,ρ为流体密度,kg/m3;u为流体速度,m/s;L为定性长度,m;σ为表面张力,N/m。韦伯数的物理意义为惯性力与表面张力之比。
CAS号:
性质:用来研究流体力学的一个准数,其表示式为。式中,ρ为流体密度,kg/m3;u为流体速度,m/s;L为定性长度,m;σ为表面张力,N/m。韦伯数的物理意义为惯性力与表面张力之比。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条