1) Jacobi elliptic function expansion method
Jacobi椭圆函数展开方法
1.
Using the modified Jacobi elliptic function expansion method,the periodic wave solutions for the coupled nonlinear Klein-Gordon equations are obtained.
利用修正的Jacobi椭圆函数展开方法,获得了一类耦合非线性Klein-Gordon方程组的周期解。
2) Jacobi elliptic function expansion method
Jacobi椭圆函数展开法
1.
Extended Jacobi elliptic function expansion method and its application;
扩展Jacobi椭圆函数展开法及其应用
2.
By the truncated expansion and Jacobi elliptic function expansion methods, we have found some exact solitary wave, rational formal, triangle function and elliptic periodic solutions of the general variable coefficient KdV equation with external force term.
运用截断展开法和Jacobi椭圆函数展开法,求得了含外力项的广义变系数KdV方程的精确孤立波解、有理形式函数解、三角函数解和椭圆周期解。
3.
We will attempt to solve a coupled KdV equations by using two methods which are very effective in solving a large class of nonlinear evolution equations,namely,Jacobi elliptic function expansion method and F-expansion method.
尝试用Jacobi椭圆函数展开法和F展开法来求解耦合KdV方程组。
3) Jacobi elliptic function rational expansion method
Jacobi椭圆函数有理展开法
1.
The extend Jacobi elliptic function rational expansion method was applied to the Boussinesq equation.
应用扩展的Jacobi椭圆函数有理展开法并辅助符号计算,建立了Boussinesq方程新的Jacobi椭圆双周期波解和相应的三角函数单周期解。
4) Jacobian elliptic function expansion method
Jacobi椭圆函数展开法
1.
Double Jacobian elliptic function expansion method under a general function transform and its applications;
一般变换下双Jacobi椭圆函数展开法及应用
5) Jacobi ellipse function method
Jacobi从椭圆函数展开法
6) Jacobi elliptic function expansion
Jacobi椭圆函数展开
1.
On the basis of the principle of homogeneous balance,these equations were resolved by Jacobi elliptic function expansion method and the exact periodic solutions were obtained.
根据齐次平衡原理,用Jacobi椭圆函数展开对这些常微分方程求解,给出了精确的周期解及其模数m→1退化情况下的孤立波解或冲击波解,与定性分析完全一致。
补充资料:Jacobi椭圆函数
Jacobi椭圆函数
Jacobi elliptic functions
加伪“椭回函数汇Jac碱困顾c如K”.胭;只劝61.,~-伙叹eclale中”.似IIH」 由玫罗汉吮正规形式的椭圆积分(e正Ptic inte-脚l)的直接反演得出的椭回函数(e】Iipticft川c石on).这个反演问题是由C.G.J.Jaeobi和N.H.Abel在1827年以稍为不同形式独立地解决的.几cobi的构造是基于应用0函数(d公加而“币.). 设:是一个复数,具有ImT>0.Jacobio函数口。(v),o、(v),口2(v)和口3(v)是用复变量”的在紧集上绝对一致收敛的下列级数表示的: o。(v)=口。(v;:)二艺(一l)“。!二,,·。’‘二,。= 一+2艺(一l)m。‘!。,·哪(2二mv); 旧一, 0,(v)=01(v;:)= =i艺(一l),。,·‘m一’‘,,,·。‘,。一,,‘二盯= 一“蘑。(一’)““‘’‘m‘’‘,,’‘sin[(Zm+,)二v]; 口2(v)二02(v;:)=艺。‘!‘m一’‘,,,·。‘2“一,,‘二·= 一“,毛。“‘’‘“‘’‘””cos[(Zm+,):”]; 口3(v)=口3(v;:)=艺。‘一,·。’!二。。= 二l+2艺。‘!。,!。os(2二mv). 爪.1这些级数收敛得相当快.记号8。(v),81(v),82(v),03(。)可追溯到K.叭几记招1石趾粥.a。(。)常常写成04(。),且有另外的记号系统.拒叨bi用记号0(v)=口。(v/ZK),H(v)=8,(v/ZK),H:(v)=8:(v/ZK),和0:(v)=03(v/ZK),这里K=:口{(o)/2. 所有Jaeobi口函数都是复变量v的整超越函数;口,(v)是奇函数,而其余的函数口。(v),口:(v)和03(v)是偶的. 以下的周期关系(详对喊city rela石o加)成立: 8。(v士l)=0。(v), 口。(v士:)=一e‘”·e十2‘’”·口。(v): 81(。士l)=一0:(v), 口,(v士:)二一e一’“二e干’‘!”·日,(。); 82(v士l)=一82(v), 口2(。士;)=e一‘”·e干’‘’p·aZ(v); 83(v士l)= 83(v), 口3(v土:)=e一”二e不’‘!’·03(v).这些关系蕴涵0函数是Herrnite第三类椭圆函数(亦见11面丽te函数(Herr苗te丘metion)). 各种0函数由以下的变换公式(七冠留几订匡币。nfonndas)相联系: 。。「。*冬1一。1(。), ““L一2」 。。[”·合·」-一‘二“·”·”】‘·,; 。,「。*冬]一、。2(。), 以‘L一2」 。1「二告·」一‘一‘一“·”·“。‘·,; 。2「。士粤)一。1(。), 以‘L一ZJ 。2「二合·」一‘二“·”·“3‘·,; 。,「。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条