说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Marcinkiewicz算子
1)  Marcinkiewicz operator
Marcinkiewicz算子
1.
In this paper,some multilinear operators related to the Marcinkiewicz operators are defined,and the weighted boundedness for the multilinear operators on some Block-Hardy spaces are obtained by using the atomic and block decomposition of the spaces.
定义了一类与Marcinkiewicz算子相关的多线性交换子,然后利用Hardy空间的原子分解和Block空间的块分解方法证明了这类多线性交换子在上述Block—Hardy空间上的加权有界性。
2.
These operators include Littlewood-Paley operator and Marcinkiewicz operator.
对一类相关于非卷积型算子的多线性算子,证明了其在Triebel-Lizorkin空间上的连续性,该算子包括Littewood-Paley算子和Marcinkiewicz算子
3.
The operators include Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.
讨论了某些多线性积分算子在Triebel-Lizorkin空间和Lebesgue空间的有界性,这些算子包括了Littlewood-Paley算子、Marcinkiewicz算子和Bochner-Riesz算子。
2)  Marcinkiewicz integral
Marcinkiewicz积分算子
1.
consider a class of Marcinkiewicz integrals M(f)(x)=[integral form n=0 to ∞│∫_(x-y)≤tk(x,y)f(y)dμ(y)│~2dt/t~3]1/2,x∈R~d,,The boundness on Herz space and the boundness from Herz spaces to weak Herz spaces are established.
考虑如下的Marcinkiewicz积分算子:M(f)(x)=[integral form n=0 to ∞│∫_(x-y)≤tk(x,y)f(y)dμ(y)│~2dt/t~3]1/2,x∈R~d,其中,μ为非倍测度。
2.
The boundedness of Marcinkiewicz integral operator μ Ω,b on product spaces R n× R m(n, m≥2) is studied.
研究了带径向函数的粗糙核的Marcinkiewicz积分算子 μΩ ,b在乘积空间Rn×Rm(n ,m≥ 2 )中的有界性 。
3)  Marcinkiewicz integral operator
Marcinkiewicz积分算子
1.
The boundedness results on the homogeneous(Morrey-Herz) spaces are established for the Marcinkiewicz integral operator with rough kernel.
证明了带粗糙核的Marcinkiewicz积分算子在齐次Morrey-Herz空间MKp,α,λq(Rn)上的有界性;同时还得到了该算子在弱齐次Morrey-Herz空间WMKp,α,1λ上的有界性结果。
2.
The boundedness results on the homogeneous Morreg-Herz spaces MK(?)(R~n) were established for the commutators generated by Marcinkiewicz integral operators with rough kernels and BMO (R~n) func- tions.
证明了一类带粗糙核的Marcinkiewicz积分算子与BMO(R~n)函数生成的交换子在齐次Morrey- Herz空间M(?)_(p,q)~(α,λ)(R~n)上的有界性。
3.
In this thesis, we investigate the boundedness of Fourier integral operatorand multilinear commutators of Marcinkiewicz integral operator with smoothfunction.
本文主要研究了Fourier积分算子以及Marcinkiewicz积分算子与Lipschitz函数生成的多线性交换子在Hardy型空间上的有界性问题。
4)  multilinear Marcinkiewicz operator
多线性Marcinkiewicz算子
1.
The weighted boundedness of multilinear Marcinkiewicz operator on Hardy and Hardy-Block spaces were obtained.
证明了多线性Marcinkiewicz算子在Hardy空间和Hardy-Block空间上的加权有界性。
2.
The weighted boundedness for the multilinear Marcinkiewicz operators on certain Hardy and Hardyblock spaces are proved.
证明了多线性Marcinkiewicz算子在一类Hardy空间和Hardy Block空间上的加权有界性。
5)  vector-valued commutator for parametric Marcinkiewciz integral
向量值参数型Marcinkiewicz积分交换子
6)  Marcinkiewicz integral
Marcinkiewicz积分
1.
Weighted boundedness of commutators of the Marcinkiewicz integrals;
Marcinkiewicz积分交换子的加权有界性
2.
Boundedness of certain Marcinkiewicz integral operators on product spaces;
乘积空间上一类Marcinkiewicz积分算子的有界性
3.
Boundedness of certain Marcinkiewicz integral operators;
一类广义的Marcinkiewicz积分算子的有界性
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条