1) Kantorovich variational method
Kantorovich变分方法
1.
The results which are calculated by Kantorovich variational method are compared with that by finite difference method.
采用变分解析法即Kantorovich变分方法,研究了环形套管内上随体Maxwell非牛顿流体由一类定常流动状态向另一类定常流动状态的非定常旋转流动的速度场分布,把该问题的高阶偏微分方程的边、初值问题降阶化为低阶的各级近似的常微分方程问题,并给出解析答案,其结果与差分结果较为一致。
2) Newton-Kantorovich method
Newton-Kantorovich方法
3) variational method
变分方法
1.
Based on the free boundary theory and variational method on convex set, an approximate formula to compute the instantaneous oil film forces for real bearings with large perturbed motions of the journal is presented in this paper.
基于自由边值理论和凸集上的变分方法 ,提出一种求解当轴颈大扰动时实际轴承瞬态油膜力的近似公式。
2.
This paper discusses the variational method of extrme value probelm of functional of more than one functions,changes the isoperimetric problem of functional of more than one functions to unconditional extrem value problem by using Lagrange′s method of multipliers,and gives the solution of this problem′s polar strip by using variational method.
先讨论含有多个函数的泛函的极值问题的变分方法,然后用拉格朗日乘子法将含多个函数的泛函的等周问题转化为相应的无条件极值问题,并用变分方法给出此类等周问题的极带的解法。
3.
By using the improved Hardy inequality and variational methods, we discuss the positive solutions of the elliptic boundary value problem -△u-μu/|x|2=u2*-1+f(x, u),whereΩ(?)RN is a smooth bounded domain such that 0∈Ω,andμ∈R is a parameter.
应用改进型Hardy不等式和变分方法,讨论了一类椭圆边值问题的正解:-△u-μu/|x|2=u2*-1+f(x, u),u∈H0 1(Ω),其中Ω是RN(N≥3)中包含的0有界光滑区域,μ∈R是一个参数。
4) Variational approach
变分方法
1.
The existence of positive homoclinic orbits is obtained by the variational approach for a class of the second order differential equations-α(x)u+β(x)u2+γ(x)u3=0,where the coefficient functions α(x),β(x),γ(x) satisfy xα′(x)≥0,xβ′(x)≤0,xγ′(x)≤0 for all x∈R.
运用变分方法证明了一类二阶微分方程-α(x)u+β(x)u2+γ(x)u3=0,x∈R的正同宿轨存在性,其中系数函数α(x),β(x),γ(x)满足xα′(x)≥0,xβ′(x)≤0,xγ′(x)≤0对任意x∈R成立。
2.
The generation and propagation of Magnetostatic Forward Volume Waves(MSFVWs)in the Bi- doped YIG film under transversely nonuniform bias magnetic fields are analyzed using the variational approach.
采用变分方法分析了垂直偏置磁场横向不均匀时掺Bi的YIG薄膜中微波静磁正向体波的激发和传播特性。
3.
Under the dynamic range constraint of the gray-level for displaying or printing, the enhanced image can be obtained via the variational approach.
提出了一种新的基于变分方法的灰度图像增强算法。
5) variational methods
变分方法
1.
By making use of variational methods,we obtain two positive solutions of p(x)-Laplace equation,which generlizes the corresponding relusts of Laplace equation.
运用变分方法证明了p(x)-Lap lace方程在适当条件下至少有两个正解,推广了p(x)≡2时的一些结果。
2.
Using variational methods,we study the existence of the periodic traveling wave solutions to ZK equation.
用变分方法研究一类ZK型方程周期行波解的存在性,不必要求非线性项f(u)具有单调性。
3.
We study the existence of a class of nonlinear elliptic equation with non-homogeneous boundary values by using variational methods for the various cases that λ,μ∈R and 1<p,q<2N/(N-2).
对于一类非齐次边值的非线性椭圆方程,应用变分方法研究了参数λ,μ∈R以及实数p,q在1到2N/(N-2)范围内此类方程的可解性,得到了一些新的结果。
6) variational reduction method
变分方法
1.
The variational reduction method is used to reduce the problem from an infinite di mensional one to a finite one,and then a relationship between multiplicity of solution and source terms in equationis revealed when nonlinearities cross eigenvalues.
利用变分方法理论,把无限维的问题转化为有限维的问题,讨论了当方程的非线性项介于特征值之间时,方程的外部项与方程解的多重性之间的联系。
2.
This conclusion is shown by a variational reduction method.
3.
It has backgrounds of deep physics and mechanics to utilize the theories of topologicaldegree, variational reduction method and critical point principle to investigate solvability andmultiplicity results of differential equations under boundary condition.
利用拓扑度理论和变分方法、临界点原理等工具研究偏微分方程边值问题的可解性和解的多重性具有深刻的物理和力学等背景,解决这类问题不仅需要古典的空间拓扑和几何等方面的性质,同时这类问题的解决又带动了非线性分析中许多新工具的产生和发展,而且也展示了一个多学科相互交融的研究领域。
补充资料:Ka
分子式:
CAS号:
性质:又称酸的离解常数,用符号Ka表示。在水溶液中,酸的强度取决于它将质子给予水分子的能力,这种给予质子能力的大小,具体反映在酸与水反应的平衡常数(Ka)上。如,弱酸HA与水(H2O)的反应:HA+H2O→H3O++A—平衡常数 Ka值越大,表示该酸将质子给予水分子的能力越强,酸也越强。Ka是衡量酸强弱的尺度。
CAS号:
性质:又称酸的离解常数,用符号Ka表示。在水溶液中,酸的强度取决于它将质子给予水分子的能力,这种给予质子能力的大小,具体反映在酸与水反应的平衡常数(Ka)上。如,弱酸HA与水(H2O)的反应:HA+H2O→H3O++A—平衡常数 Ka值越大,表示该酸将质子给予水分子的能力越强,酸也越强。Ka是衡量酸强弱的尺度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条