1) O-KKM mapping
序KKM映射
2) generalized order KKM mapping
广义序KKM映射
3) KKM map
KKM映射
1.
The definitions of FC-space,FC-subspace and KKM mapping are given,the concept of FC-subspace generated by a subset in FC-spaces is introduced,and its properties are also discussed.
给出FC-空间和FC-子空间以及KKM映射的定义,引入由子集生成的FC-子空间的概念并讨论其性质,最后得出FC-空间上闭[开]形式的KKM型定理。
2.
The concept of generalized convex space and the definitions of KKM map and Γ-convex subset on this space are given, classical KKM principle is also introduced, and then KKM principle on generalized convex spaces obtained in paper [5] is given, from which some versions of KKM type theorem are obtained.
给出一般化凸空间的概念及在该空间上KKM映射和Г-凸子集的定义,介绍古典的KKM原理,然后给出文献[5]中得到的一般化凸空间上的KKM原理,并根据上述原理得到若干个KKM型定理的表达形式。
3.
The development of classical KKM mapping and history of the KKM theory were introduced,some recently important results obtained by the KKM type theorems were given.
简要介绍古典的KKM映射的演变过程和KKM理论的发展历史,并给出利用KKM型定理得到的最近的一些重要研究成果,以进一步了解和掌握并研究KKM理论。
4) KKM mapping
KKM映射
1.
Similarly to that in convex spaces,the concept of KKM mappings is introduced inconvex topological spaces without any linear structure.
类似于在线性凸可空间的情形,本文在没有任何线性结构的抽象凸空间定义了KKM映射,并建立了KKM映射的新的一致性定理及KKM型定理。
5) G-KKM mapping
G-KKM映射
1.
G-KKM selections in G-convex space are introduced,by using G-KKM selections and G-KKM mapping,some nonempty intersection theorem are proved.
给出了G-凸空间中的G-KKM选择,由G-KKM选择和G-KKM映射,证明了一些非空交定理,推广了R。
6) F-KKM mapping
F-KKM映射
补充资料:保序映射
保序映射
isotone mapping
保序映射吻区阴犯“.月那毛;。30拍皿0e0,6一a,eHHe] 偏序集A到偏序集B中的保持序的单值映射职.保序映射起着偏序集(看成具有单一关系的代数系统(司罗bralcs那tem))的同态的作用.保序映射也称为单调映射(加noto茂Inapp略).0 .A.物aHoBa撰【补注】这样的映射也称为增的(~吨)或保序的(order币n尧℃内ng).术语“单调”一般地指或者保序的或者反序的一个映射(见反序映射(汕斑。nen坦Pp吨)) 葛显良译李慧陵校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条