1) Spectrum preserving anti-Multiplicative Map
保谱反乘法映射
2) multiplicativity-preserving mapping
保乘法映射
3) anti-multiplicative map
反乘法映射
1.
In this paper,we prove a result: suppose f:Г→Mn(P) is a anti-multiplicative map that preserve trace,then there exists an invertible S∈Mn(P) which form f(A)=SATS-1,A∈Г.
本文证明了一个结果:若f:Г→Mn(P)是一个保迹反乘法映射,则存在可逆矩阵S∈Mn(P),使得f(A)=SATS-1,A∈Г。
4) multiplicative map
乘法映射
1.
Let f:An(F)→Гn(F) is a multiplicative map which satisfies trf(A)=trA,A∈An(F),then there exists an invertible upper triangular matrix P∈Tn(F),such that f(A)=P-1AP.
f:An(F)→Гn(F)是满足trf(A)=trA,A∈An(F)的乘法映射,那么存在可逆上三角矩阵P∈Tn(F),使得f(A)=P-1AP。
2.
In this paper,we prove a result: suppose f:Г→Mn(P) is a anti-multiplicative map that preserve trace,then there exists an invertible S∈Mn(P) which form f(A)=SATS-1,A∈Г.
本文证明了一个结果:若f:Г→Mn(P)是一个保迹反乘法映射,则存在可逆矩阵S∈Mn(P),使得f(A)=SATS-1,A∈Г。
5) multiplicative mapping
乘法映射
1.
Multiplicative and anti-multiplicative mappings on matrix algebra;
矩阵代数的乘法映射与反乘法映射
2.
Let N be a Nest on a Hilbert space H which has satisfied H-≠H,N-≠N(for arbitrary N in N ),then we give out the form of rankpreserving multiplicative mapping φ on nest algebra,it is :φ(T)=ATA-1 for every T∈alg N,where A is a linear or conjugate linear bounded invertible operator.
设N为Hilbert空间H上的Nest,满足H-≠H,N-≠N( N∈N),则Nest代数algN上保秩乘法映射φ具有形式:φ(T)=ATA-1, T∈algN,其中A为线性或共轭线性有界可逆算子。
6) specturm-preserving map
保谱映射
补充资料:保角映射
保角映射
Conformal mapping
因为若wl=az,+夕,wZ=azZ+夕,则wZ一wl=a(22一21),于是IwZ一wl}=!a}·122一z,};又arg(w:一wl)=arga+arg(22一21),每一条线段旋转了角度arga。 变换W一告,此处*表示2的共、,实质上保合时一夕y尹。只不过是为了保证分式不会恒等于常数。立即可以证明,这个变换在扩充平面上是一对一的。这种变换的重要性质之一是使任何四个不同点的交比保持不变。如果这些点是21,22,23,z‘,其交比定义为l一22)(23一24):一23)(z‘一z,)。(4)(z一(z(21,22,z。,z;)当其中一点在无穷远处时,则给以适当的约定;若像点是、1,w:,二3,二;(其中任何一个可以在无穷远处)w;),只要直接加以验证即可证明(wl,,2,、3,=(21,22,23,24 如果四个点位于同一圆上,它们的交比是实的,如下式所示:之4一之1之4一之3=0或,。(5) g r a 一Z一Z2一Z g r a图2一个逆保角变换证了二g切一g一,W,一街(图2,。这个变换不是由z的解析函数定义的,因此不是保角的。但是这个变换等价于连续进行两个变换Z,一*,W一奋。第一个变换仅仅是平面绕x轴旋转180。,它使所有的角在数量上保持不变但方向相反,因此是逆保角的;第二个变换是保角的。于是W一告(叫做对于单位圆的反演)也是逆保角的;除了z一。与w一o没有像外,它在整个z平面与w平面之间是一对一的.为要避免这些例外,通过在“无穷远处”引进理想的(或虚构的)点z一co,w~二,可以将平面加以“扩充”。当z接近于零时,w就远离w~。;所以w一co可以认为是z一o的像,且w一。可以认为是z~co的像。有了这样的约定,在扩充平面上,变换就是一对一的。在无穷远处曲线间的夹角,可以通过研究当一个交点无限远离时弦的极限来引进.,或者通过以球面上的一点为投影中心,将平面球极投影到球面上(此处平面上的无穷远点投影到投影中心)来引进。无论刀。一种情形,在变换?一告,?一音之下,即使在无穷远处的角在数值上不变这一点也是真实的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条