说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 对合代数
1)  involutory algebra
对合代数
2)  involutory BCK-algebras
对合BCK-代数
3)  associative dialgebras
结合对代数
1.
Leibniz algebras and associative dialgebras as generalizations of Lie algebras and associative algebras have been studied in many papers since 1993.
自从1993年以来,作为Lie代数和结合代数的推广,Leibniz代数和结合对代数已经被广泛研究。
4)  involutorial quaternion algebra
对合四元数代数
5)  regular Sub-BL algebra
对合次BL代数
6)  Hopf subalgebras
对合Hopf子代数
补充资料:对合代数


对合代数
involution algebra "?algebra with involution

对合代数,叫曲晒叨幻g曲口或目罗bra俪thinvolut10n;即代6Pae此的门幻”“e益l 复数域上的代数E,赋予一个对合(让份。lul沁n)xl~x’,x任E.一些例子是二紧集上连续函数的代数,其中的对合是把任一函数对应于其复共扼;田忱rt空间上有界线性算子的代数,其中的对合是把任一算子对应于其伴随算子;群代数(局部紧群的)(g心uPal罗bra(ofalocallycomPactgrouP));和局部紧群上测度的代数.元素x’“E称为x的共扼元(conj刊尹teekrr℃nt)或伴随元(adjoint elenrnt).一个元素x oE称为自伴的(self一adjoint)或Hen而te的(Herrnitinn),如果二’=,;称为平规的(加m司),如果二’二-xx’.如果E包含单位元素1,则满足x‘x=xx‘=1的元素x〔E称为酉的(1川jtary).E中的Her-而te元素的集合E、是E的实向量子空间,且任一x‘E能唯一地写成x=x:十ix:的形式,这里x,,xZ‘E*.在这种情况下,x任E是正规的,当且仅当x:和x:可交换.每一个形如x’x的元素是H亡rrnite的,单位元素也是如此.如果x可逆,则x’也可逆,且(x’)一,=(x一,)’.任一Herrnite元素的谱(见元素的谱(sP以叙unl of an el既‘ni”是关于实轴对称的.一个对合代数称为全对合代数(totally~·拍石。nal罗bra),如果任一形如x’x(x任E)的元素的谱包含在非负实数集中.全对合代数的例子有:紧集上连续函数的对合代数;E山伙成空间上有界线性算子的对合代数;紧群和交换局部紧群的群代数.非紧半单Lie群的群代数不是全对合代数.交换对合代数E是全对合代数,当且仅当它的所有极大理想是对称的,或当且仅当石的所有特征是Herr面te的.每个C’代数(C‘一”lgebra)都是一个全对合代数. 对合代数E的子集M称为对合集(in铂1而onset),如果对所有的x〔M有x’〔M.对合代数的映射职:E~F称为对合映射(~lu石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条