2) stiffened cylindrical shell
加肋圆柱壳
1.
Characteristics of the input power flow in a submerged periodic ring-stiffened cylindrical shell of forced vibration;
流场中周期加肋圆柱壳受激振动的能量流输入特性
2.
Free vibration of longitudinal stiffened cylindrical shell under water;
水中纵向加肋圆柱壳体的自由振动
3.
The finite length stiffened cylindrical shells is the main structure style in hull part of vessel both in air and water, and the structure noise of these vessels comes from the vibration of shell cause by the exciting force of internal machine and the acoustic radiation in the surrounding media.
有限长加肋圆柱壳结构是空中和水下航行器舱段的主要结构形式,这些航行器的结构噪声来源于内部机械激励壳体振动并带动周围流体介质产生声辐射。
3) stiffened cylindrical shells
加肋圆柱壳
1.
This paper investigates experimentally the vibrational similarity among three models of stiffened cylindrical shells.
本文试验研究了三个加肋圆柱壳模型的振动相似性。
4) stiffened cylinder shells
加筋肋圆柱壳
5) orthogonally stiffened cylindrical shell
双向加肋圆柱壳
6) ring-stiffened cylindrical shell
环加肋圆柱壳
1.
In order to find the post-buckling path for ring-stiffened shells under hydrostatic pressure and consider the practical shapes of ring sections, the Compound Strip Method (CSM) is applied to the post-buckling analysis of ring-stiffened cylindrical shells.
为了研究水压作用下的加肋柱壳的后屈曲状况,并且能考虑到肋骨的实际截面形状和分布情况,本文将复合有限条方法应用于环加肋圆柱壳的后屈曲分析。
2.
A comparison is made among current calculation methods for the buckling of ring-stiffened cylindrical shells under hydrostatic pressure.
对静水压力下环加肋圆柱壳弹性失稳临界载荷现有计算方法进行了比较和计论。
3.
The procedtires for the general buckling analysis 0f ring-stiffened cylindrical shells under hydrostatic presstlre by finite strip method are formulated.
导出了有限条法分析环加肋圆柱壳在静水压力作用下总体屈曲的计算格式,将环加肋圆柱壳作为一个构造上的正交各向异性壳处理,推导了考虑环向加肋影响后有限条元的正交各向异性弹性矩阵。
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:
$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$
$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$
这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则
H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。
若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条