1) multi-beam-stiffened cylindrical shell
多加筋圆柱壳体
1.
Due to its structural characteristics of a multi-beam-stiffened cylindrical shell,it is widely used in engineering practices,so it is important to do vibration study on an elastic beam-stiffened cylindrical shell.
弹性多加筋圆柱壳体由于其结构的特点,广泛应用于工程实际,因此对其进行振动研究具有重要的工程价值和应用意义。
2) stiffened cylindrical shell
加筋圆柱壳
1.
Optimization design of static and dynamic characteristics of stiffened cylindrical shells based on APDL;
基于APDL语言的加筋圆柱壳的静动态性能优化设计
2.
This was done via a series of vibration sensors which were fitted on the stiffened cylindrical shell for estimating the vibration and radiated noise level.
采用传递函数法和声传递矢量(ATV)得到了加筋圆柱壳从结构测点加速度到声场测点声压的声辐射传递函数,以及结构测点加速度到辐射声功率之间的传递函数。
3.
A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise.
基于壳体屈曲的边界层理论,本文给出有限长加筋圆柱壳在侧向外压和均布热荷载共同作用下的后屈曲分析·分析中同时考虑壳体非线性前屈曲变形,大挠度和初始几何缺陷的影响·肋条的处理采用“平均刚度”法·采用奇异摄动方法导得壳体屈曲载荷关系曲线和后屈曲平衡路径,并给出完善和非完善,纵向加筋或环向加筋圆柱壳数值算例
3) stiffened cylindrical shells
加筋圆柱壳
1.
The present research situation for impacting buckling of stiffened plates and stiffened cylindrical shells is reviewed in this paper.
本文对近年来加筋板壳结构的冲击屈曲研究进行了回顾,对不同冲击载荷作用下加筋板和加筋圆柱壳的冲击屈曲现象分别做了阐述;讨论了冲击载荷、几何尺寸、初始缺陷以及加筋形式等因素对冲击屈曲的影响;最后指出了需进一步深入研究的问题。
4) slender stiffened cylindrical shell
细长加筋圆柱壳
1.
Whipping response analysis of slender stiffened cylindrical shell subjected to underwater explosion with bubble pulse;
水下爆炸气泡脉动作用下细长加筋圆柱壳的鞭状响应分析
5) stiffened laminated shells
加筋层合圆柱壳
1.
The dynamics equations of viscoelastic stiffened laminated shells were deduced by means of the mixed layerwise theory and Ressiner′s mixed variational theorem,in which quadratic functions for displacement and three-order or four-order functions for transverse stress in the shell-thickness direction were adopted.
采用混合分层理论和Ressiner混合变分原理,在壳的厚度方向取二次插值函数来描述位移沿厚度方向的变化规律;采用三次和四次插值函数来描述横向应力沿厚度方向的变化,线形处理筋条的变形,推导出粘弹加筋层合圆柱壳的动力学方程和协调方程组,并采用拉普拉斯变换,得出简支粘弹加筋层合圆柱壳稳态振动的响应解。
6) stiffened cylinder shells
加筋肋圆柱壳
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:
$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$
$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$
这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则
H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。
若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条