说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 重对定律
1)  the law of the iterated logarithm
重对定律
2)  functional laws of iterated logarithm
泛函重对数定律
1.
In this paper, we study the functional sample path properties for k-dimensional Brownian motion, and by the method of establishing large deviation formulas in topology of high-dimensional functions’s space generated by uniform norm, obtain the functional laws of iterated logarithm for k-dimensional Brownian motion.
利用了一致范数在高维连续函数空间生成的拓扑下建立大偏差公式的方法,获得了k-维Brown运动的泛函重对数定律。
3)  iterated logarithm
重对数律
1.
The law of the iterated logarithm of geometric series for negatively associated sequence;
NA列几何加权级数的重对数律
2.
Considering the product of geometric series,where negatively associated sequences are identically distributed with mean zero and variance 1,a law of iterated logarithm obtained when β converges to one.
为了进一步研究NA列,对同分布NA随机变量列,在期望为0,方差为1的条件下,建立了几何加权级数的乘积和在β趋于1时的重对数律。
3.
Considering the geometric series ξ(β)=∑∞k=1β kX k,(0<β<1), where X i are identically distributed negatively associated sequences with mean zero and variance 1, a law of iterated logarithm obtained when β converges to one.
对同分布NA随机变量序列 ,在期望为 0 ,方差为 1的条件下 ,建立了几何加权级数 ξ( β) =∑∞k=1βkXk,( 0 <β <1) ,在 β趋于 1时的一个重对数律。
4)  law of the iterated logarithm
重对数律
1.
The law of the iterated logarithm and the strong law of large munbers for product sums of PA sequences;
PA列乘积和的重对数律和强大数律
2.
In this paper,we prove strong approximations and the functional law of the iterated logarithm for linear processes generated by i.
本文讨论由独立同分布随机变量列产生的线性过程的泛函型重对数律和强逼近,同时又给出由NA随机变量列产生的线性过程的重对数律。
3.
Using the property of Brownian motion and the contraction principle , we get moderate deviations and law of the iterated logarithm for the length of intersection of p one-dimensional Wiener sausages.
利用布朗运动的相关性质和收缩原理,得到p个Wiener sausage相交部分长度的中偏差和重对数律。
5)  the law of iterated logarithm
重对数律
1.
New convergence rates for the law of iterated logarithm of the counting process of record times;
重对数律的记录时计数过程的收敛速度
2.
In this paper, we obtain the law of iterated logarithm with finite partial sum for the Gaussian Process under the condition of asymptotic mom-relevance.
在约束条件下 ,将标准维纳过程中的有限项部分和的重对数律推广到高斯过程中 ,获得了渐近不相关条件下 ,高斯过程中的有限项部分和的重对数
6)  law of iterated logarithm
重对数律
1.
On the general forms of the convergence rates of law of iterated logarithm in negatively associated random variables.;
关于NA情况下重对数律收敛速度的一般形式
2.
As an application,we give a simple proof of the law of iterated logarithm.
本文讨论了对顶点按照一定比列着色的随机图,利用泰勒展式和斯特灵公式,得到了随机图边数的中偏差和重对数律。
3.
In this paper the law of iterated logarithm for Z(s,t,n) is obtained.
OrnsteinUhlenbeck过程,且Z(s,t,n)=∑nk=1Zk(s,t),得到了过程Z(s,t,n)的重对数律。
补充资料:崔濮阳兄季重前山兴(山西去亦对维门)
【诗文】:
秋色有佳兴,况君池上闲。悠悠西林下,自识门前山。
千里横黛色,数峰出云间。嵯峨对秦国,合沓藏荆关。
残雨斜日照,夕岚飞鸟还。故人今尚尔,叹息此颓颜。



【注释】:



【出处】:
全唐诗:卷125_53
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条