1) Chung's law of iteraed logarithm
钟重对数律
2) iterated logarithm
重对数律
1.
The law of the iterated logarithm of geometric series for negatively associated sequence;
NA列几何加权级数的重对数律
2.
Considering the product of geometric series,where negatively associated sequences are identically distributed with mean zero and variance 1,a law of iterated logarithm obtained when β converges to one.
为了进一步研究NA列,对同分布NA随机变量列,在期望为0,方差为1的条件下,建立了几何加权级数的乘积和在β趋于1时的重对数律。
3.
Considering the geometric series ξ(β)=∑∞k=1β kX k,(0<β<1), where X i are identically distributed negatively associated sequences with mean zero and variance 1, a law of iterated logarithm obtained when β converges to one.
对同分布NA随机变量序列 ,在期望为 0 ,方差为 1的条件下 ,建立了几何加权级数 ξ( β) =∑∞k=1βkXk,( 0 <β <1) ,在 β趋于 1时的一个重对数律。
3) law of the iterated logarithm
重对数律
1.
The law of the iterated logarithm and the strong law of large munbers for product sums of PA sequences;
PA列乘积和的重对数律和强大数律
2.
In this paper,we prove strong approximations and the functional law of the iterated logarithm for linear processes generated by i.
本文讨论由独立同分布随机变量列产生的线性过程的泛函型重对数律和强逼近,同时又给出由NA随机变量列产生的线性过程的重对数律。
3.
Using the property of Brownian motion and the contraction principle , we get moderate deviations and law of the iterated logarithm for the length of intersection of p one-dimensional Wiener sausages.
利用布朗运动的相关性质和收缩原理,得到p个Wiener sausage相交部分长度的中偏差和重对数律。
4) the law of iterated logarithm
重对数律
1.
New convergence rates for the law of iterated logarithm of the counting process of record times;
重对数律的记录时计数过程的收敛速度
2.
In this paper, we obtain the law of iterated logarithm with finite partial sum for the Gaussian Process under the condition of asymptotic mom-relevance.
在约束条件下 ,将标准维纳过程中的有限项部分和的重对数律推广到高斯过程中 ,获得了渐近不相关条件下 ,高斯过程中的有限项部分和的重对数
5) law of iterated logarithm
重对数律
1.
On the general forms of the convergence rates of law of iterated logarithm in negatively associated random variables.;
关于NA情况下重对数律收敛速度的一般形式
2.
As an application,we give a simple proof of the law of iterated logarithm.
本文讨论了对顶点按照一定比列着色的随机图,利用泰勒展式和斯特灵公式,得到了随机图边数的中偏差和重对数律。
3.
In this paper the law of iterated logarithm for Z(s,t,n) is obtained.
OrnsteinUhlenbeck过程,且Z(s,t,n)=∑nk=1Zk(s,t),得到了过程Z(s,t,n)的重对数律。
6) LIL
重对数律
1.
Chover s LIL for (?)-Mixing Sequence of Heavy-Tailed Random Vectors;
φ-混合重尾随机向量序列的Chover型重对数律
2.
LIL for (?) -Mixing Sequence of Random Variables;
ψ-混合随机变量序列的重对数律
3.
ON THE CHOVER’S LIL FOR STABLE RANDOM FIELDS;
关于稳定随机场的 CHOVER型重对数律(英文)
补充资料:律中应钟
【诗文】:
律穷方数寸,室暗在三重。伶管灰先动,秦正节已逢。
商声辞玉笛,羽调入金钟。密叶翻霜彩,轻冰敛水容。
望鸿南去绝,迎气北来浓。愿托无凋性,寒林自比松。
【注释】:
【出处】:
全唐诗:卷466-24
律穷方数寸,室暗在三重。伶管灰先动,秦正节已逢。
商声辞玉笛,羽调入金钟。密叶翻霜彩,轻冰敛水容。
望鸿南去绝,迎气北来浓。愿托无凋性,寒林自比松。
【注释】:
【出处】:
全唐诗:卷466-24
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条