2) Ginzburg-Landau equation
Ginzburg-landau方程
1.
The existence of global solution of complex Ginzburg-Landau equation;
复Ginzburg-landau方程整体解的存在性
2.
The fractal structure of attractor for complex Ginzburg-Landau equation in three-dimensions;
三维Ginzburg-Landau方程的吸引子的分形结构(英文)
3.
Analytical self-similar solutions of Ginzburg-Landau equation for the dispersion decreasing fiber;
色散渐减光纤中Ginzburg-Landau方程的自相似脉冲演化的解析解
3) derivative Ginzburg Landau equation
导数Ginzburg-Landau方程
1.
The global existence of three-dimension derivative Ginzburg Landau equation;
三维导数Ginzburg-Landau方程的整体存在性
4) Landau-Ginzburg coefficients
Landau-Ginzburg 系数
5) complex Ginzburg-Landau equation
复Ginzburg-Landau方程
1.
Long time behavior of complex Ginzburg-Landau equation in the weighted space;
复Ginzburg-Landau方程在权空间上的长时间行为
2.
Simulation of the modulation instability in dual-core optical fiber based on complex Ginzburg-Landau equation;
基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究
3.
The usual linear variable feedback control method is extended to a generalized function feedback approach in the study of controlling spatiotemporal chaos in the one-dimensional (1D) complex Ginzburg-Landau equation.
以一维复Ginzburg-Landau方程(CGLE)为模型,提出时空混沌控制的一类广义反馈方法,研究利用二次函数作为反馈控制信号控制偏微分方程系统中时空混沌的可能性,利用数值模拟实验建立了控制参数与可控性所满足的关系,采用一种理论上的近似方法解释了可控参数区的对称性。
6) Landau-Ginzburg-Higgs equation
Landau-Ginzburg-Higgs方程
1.
The theory of the perturbation for Landau-Ginzburg-Higgs equation;
Landau-Ginzburg-Higgs方程的微扰理论
2.
Landau-Ginzburg-Higgs equation,a typical nonlinear wave equation,was sdudied based on the multi-symplectic theory in Hamilton space.
非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律。
补充资料:常系数线性常微分方程
常系数线性常微分方程
ion with constant coefficients linear ordinary differential equa-
常系数线性常微分方程【枷。ro司画叮由肠,即位叭侧,.-d佣初山伪份加吐仪喇击d曰血;皿“e如oe皿巾加Pe皿”ua-朋oeyP姗ell“e c noc”皿Hn“MH劝3如加”HellT别”“} 形如 x(”)+a:x(”一’)+…+a。x=f(r)(1)的常微分方程(见常微分方程(山伍州翔石日eq业tion,。成咖叮)),其中x(t)是未知函数,a,,…,a。是给定的实数,f(t)是给定的实函数. 对应于(l)的齐次方程(加几幻g”阳us叫Ua-tion) x(”)+a .x‘”一’)+…+a。x=o(2)可求积如下.设又:,…,又*是特征方程 又”+al几”一’+…+a。_1又+a。=O(3)的所有不同的根,重数分别为l,,…,l*;11十…十l*=n.于是函数e匆‘,r。‘,‘,…,r‘,一’e‘,亡,j=1,…,k(4)是(2)的线性无关的解(一般说是复的);即它们构成一个基本解组(允n山nrnt习systeTn of solutions).(2)的通解是基本解组的具有任意常数系数的线性组合·如果幻=为+角i是复数,则对每个满足o簇m蕊12一l的整数m,复解t门e”‘的实部t,e勺‘·cOS口zt和虚部t“e口,r sin刀,t是(2)的线性无关的实解,从而重数为lj的一对共扼复根为士汤i对应Zlj个线性无关的实解t爪e勺‘c“口,t,t用e“,‘sin几t,川=o,l,‘”,l,一l· 非齐次方程(l)可以用常数变易法(银由tionofco璐扭nts)求积.如果f是拟多项式(q恻昭i一卯1扣om阁)即 f(t)=e“‘(尹.(r)c沉bt+砚。(t)sin br),其中p。,q。是次数续m的多项式,且a十bi不是(3)的根,则可求(l)的形如 x。(t)=e“‘(P。(t)姗br+Q。(r)sin bt)(5)的特解;这里氏,Q。是系数待定的m次多项式,这些系数可通过以(5)代人(l)求出.如果a+bi是(3)的k重根,则可用待定系数法求(l)的形如 x。(t)=r‘e“‘(p,(r)e仿br+Q。(r)sin bt)的特解.如果x。(O是非齐次方程(l)的一个特解而x:(t),…,x。(t)是相应的齐次方程(2)的基本解组,则(l)的通解由公式 x(t)=x。(t)+ C lx,(t)+…+C。x。(r)给出,其中C,,…,C。是任意常数. n阶齐次线性微分方程组 交=Ax(6)(其中x任R”是未知向量,A是n xn实矩阵)可如下求积.如果又是矩阵A的重数为k的实本征值,则可求出对应于又的一个解x=(x:,,二,x。),其中 x:=pl(t)e,亡,…,x。=p。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条