1) nonautonomous Ginzburg-Landau equation
非自治Ginzburg-Landau方程
1.
We study the long time behavior of solutions for the nonautonomous Ginzburg-Landau equation driven by a time-periodic force.
研究受周期外力影响的非自治Ginzburg-Landau方程的解的长时间行为。
2) Ginzburg-Landau equation
Ginzburg-landau方程
1.
The existence of global solution of complex Ginzburg-Landau equation;
复Ginzburg-landau方程整体解的存在性
2.
The fractal structure of attractor for complex Ginzburg-Landau equation in three-dimensions;
三维Ginzburg-Landau方程的吸引子的分形结构(英文)
3.
Analytical self-similar solutions of Ginzburg-Landau equation for the dispersion decreasing fiber;
色散渐减光纤中Ginzburg-Landau方程的自相似脉冲演化的解析解
3) complex Ginzburg-Landau equation
复Ginzburg-Landau方程
1.
Long time behavior of complex Ginzburg-Landau equation in the weighted space;
复Ginzburg-Landau方程在权空间上的长时间行为
2.
Simulation of the modulation instability in dual-core optical fiber based on complex Ginzburg-Landau equation;
基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究
3.
The usual linear variable feedback control method is extended to a generalized function feedback approach in the study of controlling spatiotemporal chaos in the one-dimensional (1D) complex Ginzburg-Landau equation.
以一维复Ginzburg-Landau方程(CGLE)为模型,提出时空混沌控制的一类广义反馈方法,研究利用二次函数作为反馈控制信号控制偏微分方程系统中时空混沌的可能性,利用数值模拟实验建立了控制参数与可控性所满足的关系,采用一种理论上的近似方法解释了可控参数区的对称性。
4) Landau-Ginzburg-Higgs equation
Landau-Ginzburg-Higgs方程
1.
The theory of the perturbation for Landau-Ginzburg-Higgs equation;
Landau-Ginzburg-Higgs方程的微扰理论
2.
Landau-Ginzburg-Higgs equation,a typical nonlinear wave equation,was sdudied based on the multi-symplectic theory in Hamilton space.
非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律。
5) derivative Ginzburg Landau equation
导数Ginzburg-Landau方程
1.
The global existence of three-dimension derivative Ginzburg Landau equation;
三维导数Ginzburg-Landau方程的整体存在性
6) generalized Ginzburg-Landau equation
广义Ginzburg-Landau方程
1.
In this paper,the Legendre pseudospectral method is used to establish the semi-discrete and fully discrete schemes for numerically solving the generalized Ginzburg-Landau equation with Dirichlet boundary conditions,and the error estimation of the approximation solution is obtained.
利用Legendre拟谱方法对广义Ginzburg-Landau方程的Dirichlet问题构造了半离散和全离散逼近格式,并对半离散和全离散格式的解给出了误差估计。
补充资料:非想非非想处天
1.佛教语。即三界中无色界第四天。此天没有欲望与物质﹐仅有微妙的思想。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
Ginzburg-landau方程
复Ginzburg-Landau方程
Landau-Ginzburg-Higgs方程
导数Ginzburg-Landau方程
广义Ginzburg-Landau方程
Time Dependent Ginzburg-Landau方程
Ginzburg-Landau模型方程
广义Ginzburg-Landau方程组
变系数Ginzburg-Landau方程
随机Ginzburg-Landau方程
耦合Ginzburg-Landau方程组
二维广义Ginzburg-Landau方程
离散的Burgers-Ginzburg-Landau方程组
二维广义的Ginzburg-Landau方程
随机广义2D Ginzburg-Landau方程
非线性Ginzberg-Landau方程
非线性Landau方程组