说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Ginzburg-Landau模型方程
1)  Ginzburg-Landau model equation
Ginzburg-Landau模型方程
1.
In this paper, the existence and uniqueness of the time-periodic generalized solution and the time-periodic classical solution to the generalized Ginzburg-Landau model equation in population problems are proved by the Galerkin method.
该文应用Galerkin方法证明人口问题中一广义Ginzburg-Landau模型方程的时间周期问题广义时间周期解与古典时间周期解的存在性与唯一性。
2)  Ginzburg-Landau equation
Ginzburg-landau方程
1.
The existence of global solution of complex Ginzburg-Landau equation;
复Ginzburg-landau方程整体解的存在性
2.
The fractal structure of attractor for complex Ginzburg-Landau equation in three-dimensions;
三维Ginzburg-Landau方程的吸引子的分形结构(英文)
3.
Analytical self-similar solutions of Ginzburg-Landau equation for the dispersion decreasing fiber;
色散渐减光纤中Ginzburg-Landau方程的自相似脉冲演化的解析解
3)  the Ginzburg-Landau model
Ginzburg-Landau模型
1.
The dynamieal action functional of the Ginzburg-Landau model with long-range interactions is obtained.
得到长程作用Ginzburg-Landau模型的动力学作用量泛函。
4)  complex Ginzburg-Landau equation
复Ginzburg-Landau方程
1.
Long time behavior of complex Ginzburg-Landau equation in the weighted space;
复Ginzburg-Landau方程在权空间上的长时间行为
2.
Simulation of the modulation instability in dual-core optical fiber based on complex Ginzburg-Landau equation;
基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究
3.
The usual linear variable feedback control method is extended to a generalized function feedback approach in the study of controlling spatiotemporal chaos in the one-dimensional (1D) complex Ginzburg-Landau equation.
以一维复Ginzburg-Landau方程(CGLE)为模型,提出时空混沌控制的一类广义反馈方法,研究利用二次函数作为反馈控制信号控制偏微分方程系统中时空混沌的可能性,利用数值模拟实验建立了控制参数与可控性所满足的关系,采用一种理论上的近似方法解释了可控参数区的对称性。
5)  Landau-Ginzburg-Higgs equation
Landau-Ginzburg-Higgs方程
1.
The theory of the perturbation for Landau-Ginzburg-Higgs equation;
Landau-Ginzburg-Higgs方程的微扰理论
2.
Landau-Ginzburg-Higgs equation,a typical nonlinear wave equation,was sdudied based on the multi-symplectic theory in Hamilton space.
非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律。
6)  Ginzburg-Landau-Newed model
Ginzburg-Landau-Newell模型
补充资料:逻辑斯蒂方程(见种群增长模型)


逻辑斯蒂方程(见种群增长模型)


逻辑斯蒂方程见种群增长模型
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条