说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 离散的Burgers-Ginzburg-Landau方程组
1)  Discretized Burgers Ginzburg Landau equations
离散的Burgers-Ginzburg-Landau方程组
2)  Generalized Ginzburg-Landau system
广义Ginzburg-Landau方程组
3)  Coupled Ginzburg-Landau equations
耦合Ginzburg-Landau方程组
4)  Ginzburg-Landau equation
Ginzburg-landau方程
1.
The existence of global solution of complex Ginzburg-Landau equation;
复Ginzburg-landau方程整体解的存在性
2.
The fractal structure of attractor for complex Ginzburg-Landau equation in three-dimensions;
三维Ginzburg-Landau方程的吸引子的分形结构(英文)
3.
Analytical self-similar solutions of Ginzburg-Landau equation for the dispersion decreasing fiber;
色散渐减光纤中Ginzburg-Landau方程的自相似脉冲演化的解析解
5)  complex Ginzburg-Landau equation
复Ginzburg-Landau方程
1.
Long time behavior of complex Ginzburg-Landau equation in the weighted space;
复Ginzburg-Landau方程在权空间上的长时间行为
2.
Simulation of the modulation instability in dual-core optical fiber based on complex Ginzburg-Landau equation;
基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究
3.
The usual linear variable feedback control method is extended to a generalized function feedback approach in the study of controlling spatiotemporal chaos in the one-dimensional (1D) complex Ginzburg-Landau equation.
以一维复Ginzburg-Landau方程(CGLE)为模型,提出时空混沌控制的一类广义反馈方法,研究利用二次函数作为反馈控制信号控制偏微分方程系统中时空混沌的可能性,利用数值模拟实验建立了控制参数与可控性所满足的关系,采用一种理论上的近似方法解释了可控参数区的对称性。
6)  Landau-Ginzburg-Higgs equation
Landau-Ginzburg-Higgs方程
1.
The theory of the perturbation for Landau-Ginzburg-Higgs equation;
Landau-Ginzburg-Higgs方程的微扰理论
2.
Landau-Ginzburg-Higgs equation,a typical nonlinear wave equation,was sdudied based on the multi-symplectic theory in Hamilton space.
非线性波动方程作为一类重要的数学物理方程吸引着众多的研究者,基于Hamilton空间体系的多辛理论研究了Landau-Ginzburg-Higgs方程的多辛算法,讨论了利用Runge-Kutta方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律。
补充资料:拟线性双曲型方程和方程组


拟线性双曲型方程和方程组
quasi-linear hyperbolic equations and systems

尸二。*(“,卢),g=u,(“,刀)的六个一阶方程,其中之一是由所有其他的导出的,可以考虑这个具有五个未知函数的五个拟线性方程的组.对类似的方程组,因此对拟线性方程,成立Q成勿问题解的存在性和唯一性定理.这个方法,无需作任何重大的改变,可以应用于二阶拟线性组 a。二,+b。女,+eu堆。+韶二0,j=l,‘·,k,其中系数依赖于x,t和诸函数叼【补注】有关应用,见仁A2]一汇A3].拟线性双曲型方程和方程组【q退函七翔口hy碑比叱e闰四d.”.川另喊曰璐;~If皿.e益”砒咖eP加皿,ee翩e郑姗尹H.,“c邢cWM曰] 形如 乙「ul二又a‘D,u二f(l、 】口】‘爪的微分方程和微分方程组,方程组(l)是对具有分量。,(x),…,。*(x)(在单个方程情形下,丸二l)的矢量值函数u(x)来求解的.系数矿是矩阵,它的元依赖于空间自变量x=(x。,二,x。)和矢量值函数u,以及它的直到嫩一1阶在内的偏导数.右端项f亦依赖于这些变量.如果矿是和u的分量个数有相同阶的方阵,那么称(1)是确定方程组(de沈rn应贺d哪t曰m).特征形式(chara叱ristic form) e‘古’一。‘“。,”‘,“·,一det…1.:落。二;·……是由L的丰邵(p血cip司part)艺{二{一‘少所决定的.这里D“=沙!/刁瑞。…日袱·,而扩=鱿,.‘’C“· 方程组(1)的双曲性是由算子L的下列表征所定义的.对于x,u及其直到川一1阶在内的导数的每一组值,存在一个矢量心‘R”+’,使得对任一不平行于心的叮〔R”+’,特征方程(cllaraCteristic叫Uation) Q(又心+粉)二0(2)有mk个实根又(每个根有多少重就算多少次). 通过某点尸‘R”十’且垂直于矢量省的面元称为空向的(印ace】正e),垂直于空向面的方向称作时向的(石力℃」正e), 一曲线,在它每个点上都有时向的切线,称作时向曲线(ljme.】ike~). Ca.dly问题(Ouchy Problem)在拟线性双曲型方程和方程组的所有问题中占有中心位置,它是在下列条件下求方程组(l)的解u的问题:在由方程 职(x)“0,!D,卜}gad甲1尹0所定义的某个光滑的n维超曲面n上,已给函数u以及它的(沿某个不切于n的方向的)直到爪一l阶(在内)的偏导数的值.如果总可以求得这样的解,那么n称作是关于L的自由超曲面(6优b)咪r-surfa此). 如果(1)的系数和给在解析自由超曲面n上的Q叻y条件都是解析的,那么在n的一个邻域中的解析解是唯一的;如果Q公勿条件还包含有n上所有直到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条