说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 卷积算子半群
1)  Convolution operator semigroup
卷积算子半群
2)  convolution semigroup
卷积半群
1.
Let π be a convolution semigroup and ψ its Laplace exponent.
设π是一个卷积半群,ψ是π的Laplace指数,本文将研究ψ在零点的性质,并证明了ψ的零点具有π的位势测度的渐近状态的特
3)  convolution operator
卷积算子
1.
We present a new method for designing kernel function of H~n(R) using kernel function of H~1(R) and convolution operator.
利用卷积算子和H1(R)核函数给出了一种设计Hn(R)核函数的新方法,该方法简便易行。
2.
A new good method for computing the reproducing kernels of H″(R) (n ∈Z + and n ≠1) presented was based on the use of the reproducing kernel of H 1(R) and the convolution operator in this paper.
本文利用卷积算子和H1(R)的再生核函数给出了一种计算Hn(R)的再生核的新方法。
3.
Ehrenpreis and Hormander discussed the solvability of convolution operators in Schwartz space.
Ehrenpreis及Hormander在Schwartz缓增分布空间中讨论了卷积算子的可解。
4)  convolution operators
卷积算子
1.
Using results of the representations of two_step nilpotent groups and convolution operators, the paper discusses the relation between the convolution operators and the pseudodifferential operators.
利用二步幂零Lie群及其上卷积算子的表示 ,通过讨论二步幂零Lie群上卷积算子和拟微分算子的联系 ,给出了一类卷积算子卷积核的刻划 ,并讨论了其试验函数空间 。
2.
Using the general theory of the unitary representations of nilpotent groups and the formulas of unitary representations of two_step nilpotent groups,we obtain the concrete representation of the distributions and convolution operators on two_step nilpotent Lie groups.
从幂零Lie群酉表示的一般事实出发 ,利用二步幂零Lie群的酉表示 ,给出了二步幂零Lie群上分布的群Fourier变换和卷积算子的具体表
3.
Using convolution operators this paper discusses the solution of convolution-type Volterra integral equations by means of operators, and a new algorithm of solving kernel is obtained.
利用卷积算子讨论卷积型Volterra积分方程的解法,得到了解核的一种新算
5)  convolution group
卷积运算群
6)  operator semigroup
算子半群
1.
By introducing the general notion of nonwandering operator semigroup T(t) and utilizing a basic result in normed linear space,the nonwandering property of T(t)=e~(tA) is investigated with the constructive method.
通过给出一般算子半群T(t)的非游荡性概念,利用赋范空间的一个基本结果和直接的构造法证明了具有变系数的线性发展方程的强连续解半群T(t)=etA在适当的条件下是非游荡的;另外,通过对C-半群T(t)概念的引进,定义了一个无界算子半群etA,进一步证明了这二者关于非游荡性的联系;最后给出了一个无界算子半群etP(B)关于非游荡性理论的刻画,其中P(B)是微分多项式。
2.
The existence and uniqueness of nonnegative solution to the system are proved by using the theory of bounded linear operator semigroup.
讨论了一类带有垂直传染的年龄结构 SIR流行病模型 ,利用有界线性算子半群理论证明了其非负解的存在性和惟一
3.
In this paper the existince ,uniquebess and asymptotic property of solution for nonlinear evolution equation is studied by means of operator semigroup.
用算子半群方法研究了一类非线性发展方程整体解的存在惟一性和渐近
补充资料:半群的生成算子


半群的生成算子
generatmg operator of a semi-group

闭包的一个扩张·它亦称为T(t)的广冬丰感攀矛(罗-理晓山戏月脚ela血90详盼扣r). 在使反常积分 了:(、)劝(3) 0收敛的所有x任x的集合D,上,对于Re义>。,我们定义算子 ;(*)一殃!一T(·)汕,其中口是半群T(t)的型.这个算子具有下列性质: l)R(又)D,C=D,; 2)R(又)x一R(拜)x=(召一又)R(又)R(拼)x; 3)R(又)(万一A。)x=x,x‘D(Ao); 4)(双一滩)R(又)戈=x,xeD,门XO. 如果积分(3)对任何x‘X绝对收敛,那么当且仅当T(t)x兰0(x〔X)蕴含x=0时,生成算子A存在;算子R(劝有界,而且如果X=X0,那么它与A的预解式(n乏。IVent)一致:域。为闭(即A二A。)的充分必要条件是,对所有xeXO, 恤上 t~ot; 在算子半群的理论中,基本问题是建立起算子半群的性质与它的生成算子的性质之间的关系,后者通常是借助于R(劝来表示的,半群的生成算子【群世”白犯q珍m姗ofa胭111一驯川p;即003.月二川一翻ooepaTop no。”pyn,。】 一个作用于复加朋山空间X上的线性算子半群(~一罗)UPsof。详份仍玲)T(t)(00,夕任X.如果X0表示一切T(t)(t>0)的值域之并的闭包,那么D(A。)在X0中稠密,并且自。D(粼)也在x0中稠密.A。的值也位于X0中.如果A。是一个无界算子,那么D(A。)是X0中第一范畴集‘ 如果X0不含使得T(t)x三o的元素x,那么A。有闭包A二不,它也称为半群T(t)的牛感算矛(罗讹Iating openltor).在这种情形下,对于x任D(A), :(,)*一:(:)二一丁:(:),x、:,(2) dT(t、xJ~,、~,、j 兰蓄兰一AoT(‘),一T(艺)注,·这些方程定义了一个算子A,一般而言,它是A。的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条