说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 解卷积算子
1)  deconvolver
解卷积算子
2)  k-convoluted solution operator families
k-卷积解算子族
1.
We prove that if(A,μ) generate an exponentially bounded k-convoluted solution operator families,then(AB,μ),(BA,μ) or(A(I+B),μ),((I+B)A,μ) also generate an exponentially bounded k-convoluted solution operator families.
证明了如果(A,μ)生成一个指数有界的k-卷积解算子族,那么(AB,μ),(BA,μ)或(A(I+B),μ),((I+B)A,μ)也生成一个指数有界的k-卷积解算子族。
3)  convolution operator
卷积算子
1.
We present a new method for designing kernel function of H~n(R) using kernel function of H~1(R) and convolution operator.
利用卷积算子和H1(R)核函数给出了一种设计Hn(R)核函数的新方法,该方法简便易行。
2.
A new good method for computing the reproducing kernels of H″(R) (n ∈Z + and n ≠1) presented was based on the use of the reproducing kernel of H 1(R) and the convolution operator in this paper.
本文利用卷积算子和H1(R)的再生核函数给出了一种计算Hn(R)的再生核的新方法。
3.
Ehrenpreis and Hormander discussed the solvability of convolution operators in Schwartz space.
Ehrenpreis及Hormander在Schwartz缓增分布空间中讨论了卷积算子的可解。
4)  convolution operators
卷积算子
1.
Using results of the representations of two_step nilpotent groups and convolution operators, the paper discusses the relation between the convolution operators and the pseudodifferential operators.
利用二步幂零Lie群及其上卷积算子的表示 ,通过讨论二步幂零Lie群上卷积算子和拟微分算子的联系 ,给出了一类卷积算子卷积核的刻划 ,并讨论了其试验函数空间 。
2.
Using the general theory of the unitary representations of nilpotent groups and the formulas of unitary representations of two_step nilpotent groups,we obtain the concrete representation of the distributions and convolution operators on two_step nilpotent Lie groups.
从幂零Lie群酉表示的一般事实出发 ,利用二步幂零Lie群的酉表示 ,给出了二步幂零Lie群上分布的群Fourier变换和卷积算子的具体表
3.
Using convolution operators this paper discusses the solution of convolution-type Volterra integral equations by means of operators, and a new algorithm of solving kernel is obtained.
利用卷积算子讨论卷积型Volterra积分方程的解法,得到了解核的一种新算
5)  Vilenkin convolution operators
Vilenkin卷积算子
6)  convolutive fuzzy arithmetic
卷积模糊算子
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条