1) strong-contraction semigroups
强压缩积分算子半群
2) contraction integrated semigroup
压缩积分半群
1.
In this paper,we give the sufficient and necessary conditions for a general birth,death and catastrophe q-matrix Q generating a contraction integrated semigroup on l∞,and show that Q generates a minimal integrated Q-semigroup T(t) on l∞.
研究了一般突变q-矩阵Q在l∞上生成一个压缩积分半群的充要条件,并且Q可在l∞上生成一最小的积分Q-半群T(t),讨论了T(t)单调的充要条件,给出了T(t)是Feller的充分条件,并讨论了T(t)关于时间t的极限行为。
3) positive contraction integrated semigroup
正压缩积分半群
1.
In chapter four, we get that the operator Q_(l_∞) derivedfrom Q generates a once positive contraction integrated semigroups T(t) on l_∞,and T{t) isintegrated Q -semigroups.
突变分支过程的状态空间是E={0,1,2,…},其转移函数是P(t)={p_(ij)(t);i,j∈E},满足Kolmogorov前向方程:P\'(t)=P(t)Q,其q-矩阵Q=(Q_(ij);i,j∈E)定义为:其中:a>0,d>0本文主要研究突变分支过程Q的性质,尤其是突变分支过程Q在Banach空间l_∞上生成一个正压缩积分半群T(t)的性质。
4) Postive contraction integrated semigroup
一次正压缩积分半群
5) Positive once Integrated semigroups with contractions
正的一次压缩积分半群
6) increasing integrated semigroups
增加积分算子半群
1.
In an ordered Banach space,a generation theorem,about increasing integrated semigroups of strong-contractions,is obtained in terms of resolvent positive operators and dissipative operators.
在序Banach空间中,用耗散算子和预解正算子刻画增加积分算子半群;给出了增加的强压缩积分算子半群的生成定理,发展了近期关于增加积分算子半群的相关结果。
补充资料:半群的生成算子
半群的生成算子
generatmg operator of a semi-group
闭包的一个扩张·它亦称为T(t)的广冬丰感攀矛(罗-理晓山戏月脚ela血90详盼扣r). 在使反常积分 了:(、)劝(3) 0收敛的所有x任x的集合D,上,对于Re义>。,我们定义算子 ;(*)一殃!一T(·)汕,其中口是半群T(t)的型.这个算子具有下列性质: l)R(又)D,C=D,; 2)R(又)x一R(拜)x=(召一又)R(又)R(拼)x; 3)R(又)(万一A。)x=x,x‘D(Ao); 4)(双一滩)R(又)戈=x,xeD,门XO. 如果积分(3)对任何x‘X绝对收敛,那么当且仅当T(t)x兰0(x〔X)蕴含x=0时,生成算子A存在;算子R(劝有界,而且如果X=X0,那么它与A的预解式(n乏。IVent)一致:域。为闭(即A二A。)的充分必要条件是,对所有xeXO, 恤上 t~ot; 在算子半群的理论中,基本问题是建立起算子半群的性质与它的生成算子的性质之间的关系,后者通常是借助于R(劝来表示的,半群的生成算子【群世”白犯q珍m姗ofa胭111一驯川p;即003.月二川一翻ooepaTop no。”pyn,。】 一个作用于复加朋山空间X上的线性算子半群(~一罗)UPsof。详份仍玲)T(t)(0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条