说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正算子半群
1)  Positive semi-groups of linear operators
正算子半群
2)  Positire Co semigroup
正算子C_0半群
3)  operator semigroup
算子半群
1.
By introducing the general notion of nonwandering operator semigroup T(t) and utilizing a basic result in normed linear space,the nonwandering property of T(t)=e~(tA) is investigated with the constructive method.
通过给出一般算子半群T(t)的非游荡性概念,利用赋范空间的一个基本结果和直接的构造法证明了具有变系数的线性发展方程的强连续解半群T(t)=etA在适当的条件下是非游荡的;另外,通过对C-半群T(t)概念的引进,定义了一个无界算子半群etA,进一步证明了这二者关于非游荡性的联系;最后给出了一个无界算子半群etP(B)关于非游荡性理论的刻画,其中P(B)是微分多项式。
2.
The existence and uniqueness of nonnegative solution to the system are proved by using the theory of bounded linear operator semigroup.
讨论了一类带有垂直传染的年龄结构 SIR流行病模型 ,利用有界线性算子半群理论证明了其非负解的存在性和惟一
3.
In this paper the existince ,uniquebess and asymptotic property of solution for nonlinear evolution equation is studied by means of operator semigroup.
用算子半群方法研究了一类非线性发展方程整体解的存在惟一性和渐近
4)  semigroups of linear operators
算子半群
1.
In this paper,we study the approximation of transition functions in continuous-time Markov chains by means of semigroups of linear operators.
运用算子半群方法,讨论了q-矩阵的截断矩阵对应Q-函数的收敛问题;引进q-矩阵的Yosida逼近矩阵,证明了任意Q-过程可以由一列有界Q-过程逼近。
5)  semigroup of operator
算子半群
6)  semigroups of operators
算子半群
1.
In present paper,we study the asymptotic behavior of a parallel repairable system with two non- identical units,we prove by strongly continuous semigroups of operators theory that there exists a unique non- negative solution of the system,the stability of the solution of this system is ob- tained by studying spectral properties of the operator corresponding to this system.
用强连续算子半群理论证明了两不同部件并联可修系统解的存在唯一性和非负性 ,并通过研究相应算子的谱特征得到了该系统的稳定性 。
2.
In this paper, firstly we study of the existence and uniqueness a dynamie state non-negative solution the complex repairable system by semigroups of operators theory, further we prove that 0 is the simple eigenvalue of the system.
本文用算子半群理论给出了一类复杂可修退化系统动态非负解的存在惟一性证明,并进一步证明了0是系统主算子的简单本征值。
3.
In this paper, we shall prove the existence and uniqueness of a non\|negative time\|dependent solution of the robot and its associated safety mechanism by strongly continuous semigroups of operators theory.
本文用强连续算子半群理论证明了机器人与其连带的安全装置构成的系统存在唯一的非负动态依赖解 ,并表明在一定条件下 ,系统存在稳态正解 ,且系统的动态解在通常意义下 (空间范数意义下 )渐近收敛于稳态
补充资料:半群的生成算子


半群的生成算子
generatmg operator of a semi-group

闭包的一个扩张·它亦称为T(t)的广冬丰感攀矛(罗-理晓山戏月脚ela血90详盼扣r). 在使反常积分 了:(、)劝(3) 0收敛的所有x任x的集合D,上,对于Re义>。,我们定义算子 ;(*)一殃!一T(·)汕,其中口是半群T(t)的型.这个算子具有下列性质: l)R(又)D,C=D,; 2)R(又)x一R(拜)x=(召一又)R(又)R(拼)x; 3)R(又)(万一A。)x=x,x‘D(Ao); 4)(双一滩)R(又)戈=x,xeD,门XO. 如果积分(3)对任何x‘X绝对收敛,那么当且仅当T(t)x兰0(x〔X)蕴含x=0时,生成算子A存在;算子R(劝有界,而且如果X=X0,那么它与A的预解式(n乏。IVent)一致:域。为闭(即A二A。)的充分必要条件是,对所有xeXO, 恤上 t~ot; 在算子半群的理论中,基本问题是建立起算子半群的性质与它的生成算子的性质之间的关系,后者通常是借助于R(劝来表示的,半群的生成算子【群世”白犯q珍m姗ofa胭111一驯川p;即003.月二川一翻ooepaTop no。”pyn,。】 一个作用于复加朋山空间X上的线性算子半群(~一罗)UPsof。详份仍玲)T(t)(00,夕任X.如果X0表示一切T(t)(t>0)的值域之并的闭包,那么D(A。)在X0中稠密,并且自。D(粼)也在x0中稠密.A。的值也位于X0中.如果A。是一个无界算子,那么D(A。)是X0中第一范畴集‘ 如果X0不含使得T(t)x三o的元素x,那么A。有闭包A二不,它也称为半群T(t)的牛感算矛(罗讹Iating openltor).在这种情形下,对于x任D(A), :(,)*一:(:)二一丁:(:),x、:,(2) dT(t、xJ~,、~,、j 兰蓄兰一AoT(‘),一T(艺)注,·这些方程定义了一个算子A,一般而言,它是A。的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条