说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 一秩幂零算子
1)  rank one nilpotent operator
一秩幂零算子
2)  nilpotent operator
幂零算子
1.
In this paper, we shall obtain some sufficient and necessary conditions for the second degree Putnam Fuglede theorem to be true under the perturbation of the nilpotent operators and for some non normal operators.
本文给出了在幂零算子扰动下及在一些非正常算子时的二次PF定
3)  rank one operator
秩一算子
1.
This paper discusses atoms and rank one operators of TAF algebra,and generalizes the theorem 2.
研究了TAF代数中的原子和秩一算子,将Elias Katsoulis和Justin R Peters在文献中的定理2。
2.
If T is a rank n\ operator, then there are n rank one operators R\-i}\+n\-1 in U such that \$T=ni=1R\-i\$ and T-1=ni=1R\-i-1\$.
本文证得 :若 T为秩 n算子 ,则存在 n个秩一算子 {Ri}n1 U,使得 T =∑ni=1Ri,并且‖ T‖1=∑ni=1‖ Ri‖ 1;若 T为迹类算子 ,则 T可表示为一个迹范数绝对收敛级数 ,其中构成该级数的每一项都是 U中的秩一算子 ,并且‖ T‖ 1=inf ∑∞i=1‖ Ri‖1∶ T =∑∞i=1Ri,Ri ∈ U,rank Ri =1 ,∑∞i=1‖ Ri‖1<∞ 。
3.
On this base,with the help of the properties of rank one operator and the character.
在此基础上 ,利用秩一算子的性质和Nest代数的特点 ,得到映射 φ的表达式为 :φ(T) =ATA- 1φ(I) , T∈algN ,从而推广了荆武的结
4)  rank one operators
一秩算子
1.
In this paper, the extreme points in the unit ball of the preannihilator U\-⊥ of a weakly closed T(N)\|module U and the rank one operators in U\-⊥ were completely characterized.
本文完全刻划了弱闭 T( N) -模 U的预零化子 U⊥ 中单位球的端点和一秩算子的关系 ;并且利用这一刻划 ,给出了弱闭 T( N) -模的自反性和距离公式 dist( A,U) =sup N ‖ P( N) ⊥ AP( N )‖的一个新的证
5)  rank one operator
一秩算子
6)  quasi-nilpotent operator
拟幂零算子
补充资料:幂零Lie代数


幂零Lie代数
Lie algebra, nilpotent

幂零lie代数【liealgebI’a.浦训t即t;瓜朋~。代Hm明盯e6Pal 域k上满足下列等价条件之一的代数(司罗bla)g: l)有g的理想的有限降链{9.}。“、。,使得g。=g,g。={o},且对o簇i1,则其换位子理想的余维数codim【g,g」》2.特别地,如果dinlg簇2,则g是交换的.唯一的非交换的三维幂零Lie代数g同构于n(3k).对于几个小维数(当k=C,对于dinig续7)幂零Lie代数已经开列出来,但仍然没有它们分类的一般途径(1989). 幂零Lie代数(早期,它们被称为特殊Lie代数(51不戈诫Liea】罗b几璐)或O阶Lie代数)在5 .Lie关于微分方程积分方法研究的第一阶段就已经遇到了.可解lie代数(L记al罗bra,501铂b】e)的分类在一定意义下归结为枚举幂零Lie代数.在任意有限维Lie代数中都有一个最大的幂零理想(【21的术语,诣零根(成mdical)).另一个幂零理想也被考虑了—不可约的有限维表示的核的交集(幂零根,亦见lie代数的表示(rePn乏ellta-tion of a Lie algebm))(见【11,【4」).如果r是代数g的根,则幂零根n与 汇g,:]=[g,g]自r重合.商代数g/n是约化的(见约化块代数(玩司罗-腼,阁ucti祀)),并且n是有此性质的最小的理想.如果chark=O,则诣零根由所有使得adx幂零的x〔T组成. 研究C上约化Lie代数g,自然提出幂零子代数,它们是抛物子代数(parabelic su加】罗bra)的幂零根.当g=gI(V)时,这些幂零子代数与上面考虑过的子代数n(F)重合.9的一个Borel子代数(见Borel子群(Borel subgrouP))是g的一个由幂零元组成的极大子代数,不计共扼意义下是唯一的.更广的一类幂零L记代数由g的抛物子代数的由幂零元素组成的任意理想形成.当g=叭(V)时,这些幂零Lie代数已在【6]中被分类〔标准诣零代数〔standa记nila」geb闭)),而一般情形下在【7」中. 一个幂零Lie代数的中心必是非平凡的,而任意一个幂零Lje代数均可由幂零代数的中心扩张列得到.幂零Lie代数类关于子代数、商代数、中心扩张、有限直和是封闭的.特别地,n(n,k)的任意子代数是幂零的.反之,任意一个有限维幂零Lie代数必然同构于n(m,k)的一个子代数,对某个m(如果chark=0);这是八d。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条