说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Laplace方程Cauchy问题
1)  Cauchy problem for Laplace equation
Laplace方程Cauchy问题
1.
In this paper, from the viewpoint of optimality analysis, we consider three classical inverse boundary value problems: the inverse heat conduction problem, backward heat conduction problem and Cauchy problem for Laplace equation.
本文从最优性分析的角度考虑了三类经典的逆边值问题,即逆热传导问题、反向热传导问题、Laplace方程Cauchy问题
2)  Cauchy problem of Laplace equation
Laplace方程的Cauchy问题
3)  Cauchy problem for Helmholtz equation
Helmholtz方程Cauchy问题
4)  the Solution
Laplace方程边值问题
5)  Cauchy problem of parabola equation
抛物型方程的Cauchy问题
6)  Cauchy problem for modified Helmholtz equation
修正的Helmholtz方程Cauchy问题
补充资料:Laplace方程


Laplace方程
Laplace equation

U内沈方程【b户此仰颐.;J加I理a冲~服e] 如下形式的齐次偏微分方程 ‘._护“._.扩u_八 △“兰资=于+…+一签共一=0.(l、 一日x幸日x二其中u=二(x)=u(x.,…,x。)是n个实变元的函数.肠p场沈方程的左边称为作用于“的U内理算子(助place。拌份幻r).在E议土d空间R”(n)2)的某个区域D里,助pla戊方程的c,类正则解,即在D里有直到二阶的连续偏导数的解,称为D里的调和函数(加叮的川c允圈浏on).助plaCe方程是二阶椭圆型偏微分方程的主要代表,对解椭圆方程的边值问题,其基本方法已经和仍在发展(见椭圆方程边值问题(加助-由卿明习佣problem,eiliP石c闪叩t10ns)). 令v是D里一个位势向量场(poten往al袋以or反记),即v=一脚du,其中u二u(xl,…,x。)是位势.因为 △“=div脚d“=一divv,加phce方程的物理意义是,任意这种场的位势在没有源泉的区域D里满足肠ph戊方程,例如,万有引力场的引力位势在没有吸引质量的区域里,静电场的位势在没有电荷的区域里,等等,都满足LaP场羌方程.这样,加plaCe方程表示位势场的守恒定律.从这个观点看,助plaCe方程的形式(l)是选取D匕Cad岛直角坐标系得到的;在其他坐标系,肠p】aCe算子和肠p-laCe方程取不同形式.在这个场存在源泉的地方,(l)的右边是一个同源泉的密度成比例的函数,而U PlaCe方程变成P成,阴I方程(PoisS0neq谬tion).肠ph沈方程也出现在许多其他的,研究稳定场的数学物理间题中,例如稳定温度分布的研究,静弹性理论的问题,等等. 对Up场Ce方程,下述位势论的边值问题是主要的:l)D苗由峨问题(D试chletprobleln),或者第一边值问题(fnst饰朋da斗喇ue prob】。n),即寻求一个调和函数,使得它取给定在区域的边界刁D上的连续值;2)N期抽1.问题(Ne切mannprobhtn),或者第二边值问题(s助nd boUn山叮词碳Problem),寻求一个调和函数u,使得它的法向导数刁“/日n取给定在日D上的连续值;3)混合问题(m血曰pmb如n),寻求一个调和函数“使得在边界上满足线性关系 ‘,.、日“(y)_,.、,.、__,.、 “(y)二亏丫二+召(y)u(y)=g(y), ‘、2产刁n尸“J产一、J产口、J户’ y‘刁D,“(y)笋0. 在n=2的情况下,助pla优方程与单个复变元:=x,十ix:的解析函数论有紧密联系,事实上,解析函数的实部与虚部是共辘调和函数(co句川笋记卜汀.加nic func石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条