说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Cauchy-Riemann问题
1)  Cauchy-Riemann problem
Cauchy-Riemann问题
1.
Convergence and smoothing factor of DGS method applied to Cauchy-Riemann problems;
DGS法应用于Cauchy-Riemann问题的收敛性和光滑因子
2)  Riemann problem
Riemann问题
1.
Shock capturing scheme based on two-shock approximation to Riemann problem;
Riemann问题基于双激波近似的激波捕捉格式
2.
The pressure and velocity of the ghost fluid are replaced respectively by the pressure and velocity of the interface which are obtained by solving a Riemann problem,the density of the ghost fluid is gained by extrapolating the entropy constant.
为了解决原来的ghost fluid方法在计算强激波和界面相互作用时界面附近出现的速度和压力振荡问题,对原来的ghost fluid方法进行了改进,通过在界面处构造Riemann问题并求出界面的压力和速度,ghost fluid流体的压力和速度分别用界面的压力和速度代替,ghost流体的密度通过熵常数外推得到。
3.
The double shock approximation and two level iteration algorithm are used to solve the Riemann problem for general equation of state.
采用双波近似和两层迭代算法求解一般状态方程的Riemann问题;并根据多流体接触界面无振荡原则设计高精度计算格式,对典型的纯界面平移问题可以从理论上证明本算法在接触间断附近压力和速度没有振荡,而且数值模拟结果表明界面数值耗散也被控制在2~3个网格之内。
3)  Riemann-Hilbert problem
Riemann-Hilbert问题
1.
This paper considers orthogonal polynomials with respect to certain weights on the unit circle and establish strong asymptotic formulas for them on entire complex plane, which is based on the steepest descent method for oscillatory Riemann-Hilbert problems introduced by Deift P.
所引进的关于振荡型Riemann-Hilbert问题的最速下降法,建立了这类正交多项式在整个复平面上的强渐近公式,发展和改进了一些经典结果。
4)  Cauchy Problem
Cauchy问题
1.
Property of Solutions to the Cauchy Problems in Kawaharo-Burgers Equation;
Kawahara-Buegers方程Cauchy问题解的性质
2.
Cauchy problem for a class of linear hyperbolic equations with discontinuous coefficients;
一类具有间断系数的线性双曲型方程组的Cauchy问题
3.
Cauchy problem for generalized Ostrovsky equation;
广义Ostrovsky方程的Cauchy问题
5)  Complex Cauchy's problem
复Cauchy问题
6)  singular Cauchy problem
奇Cauchy问题
补充资料:Cauchy特征问题


Cauchy特征问题
Caudly characteristic problem

  对于广泛的一类双曲型方程和抛物型方程,在自变量xl,xZ,…,x,,t的空间E。十1中,以确定方式定向的非闭”维曲面S可以作为它的给值面.例如,如果S是类空曲面,那么(翅.由y问题(Cauchy Problem)(初值给在S上)的提法总是适定的.在Cauchy特征问题中给值面总是特征流形(或者它的某个确定部分).在此情形Cauchy间题可以没有解;如果有解,也可以是不唯一的. 例如,对方程伍=1,xl=x) u:r=0在特征t=0上给值 u(x,0)=叹尤),u‘(x,0)=v(x)的Cauchy特征问题是不适定的.如果Cauchy特征问题的解存在,那么从方程和第二个初始条件导出的问题可解的必要条件是v‘(x)=O,即仅当,(x)=常数=“时Cau由y特征问题的解可以存在.在此情形,如果;(x)任CZ,t)0,解事实上存在,并由下列公式给出: u(x,t)=代x)+at+试t),其中p(t)是C,类的任意函数,t)0,满足条件p(0)=p,(0) =0. 为使线性双曲型方程组的Q公勿特征问题的解存在,要求方程组的增广矩阵的阶等于沿特征曲面S的退化矩阵的阶. 存在广泛的一类双曲型方程和方程组,特征曲面可以作为它们的给值面.例如,对于方程 月 艺叭.:‘一u,,=0,(l) 万=l它的特征曲面S是锥面 仓(x,一x?户一(,一,。尹一。.(2) ,二1Cauchy特征问题为:求方程(l)在锥面(2)内正则的解,它在锥面(2)上取预先给定的值. 在一个空间变量(n=1,x:”x)的情形,锥面(2)成为一对通过点(x。,动的直线(x一x。)’=(t一t0)2.这两条直线将变量x,t的平面凡划分为四个角.设域。是这些角中的一个.在此情形特征问题被称为Goursat.问题:确定方程 “”一ur,=0在域Q正则的解u(x,O,它满足条件 u=中,若x一xo=t一to, u=伞,若x一xo=to一l, 中(x。,t。)=认x。,t。).如果特征曲面S同时是退化型或退化阶的曲面,那么Cauchy特征问题可以是适定的. 方程 少用喻一ux,+aux+b巧十cu=f(3)当y>O时是双曲型的,退化线y=0是特征线.当0  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条