说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Cramr-Lundberg渐近性质
1)  Cramer-Lundberg approximation
Cramr-Lundberg渐近性质
2)  asymptotic behavior
渐近性质
1.
Asymptotic behavior of thesolution of the neutron trans port equations with continuative energy and with generalized reflecting boundary conditions;
具广义边界条件及连续能量的中子迁移方程解的渐近性质
2.
We are interested in the asymptotic behavior of the solutions up(x,t) as p→∞ for N=1,when the initial value u0(x) has no compact support.
本文讨论了带吸收项的P-Laplace方程解当p→∞时的渐近性质。
3.
In this paper,we investigate the periodicity,asymptotic behavior and asymptotic stability of the solutions for difference equationxn+1=α+β(xpn-k)/(xpn-l)n=0,1,…where α≥0,β>0,p≠0,k and l are nonnegative integers,μ=max{k,l},and the initial values x-μ,x1-μ,…,x0 are arbitrary positive real numbers.
本文考虑差分方程xn+1=α+β(xpn-k)/(xpn-l)解的周期性、渐近性质和渐近稳定性。
3)  asymptotic property
渐近性质
1.
A asymptotic property of mean-value for the generalized Cauchy s mean-value theorem;
广义Cauchy中值定理“中值”的一个渐近性质
2.
In this paper,it presents some criteria for the asymptotic property for a class of second-order nonlinear differential equation with damping.
研究了一类二阶非线性阻尼微分方程非振动解的渐近性质,建立了3个渐近性定理,改进了已知的结果。
3.
In the paper,a generalization of weighted average intermediate theorem are given,and its asymptotic property for intermediate point are given.
给出了加权平均介值定理的一个推广,并讨论了相应介值点的一个渐近性质。
4)  asymptotic Properties
渐近性质
1.
The thesis gives asymptotic properties of the differential mean valueξcontained in Euler-Maclaurin numerical integral formula when the length of integral interval tends to be zero.
文章给出了Euler-Maclaurin数值求积公式中,当积分区间长度趋向于零时,微分平均值ξ的渐近性质。
2.
Moreover,asymptotic properties of isotropic constant of B~n_p is obtained as n→∞ and p→(∞.
该文证明当1≤p≤∞时,Bnp是迷向的凸体,并给出了Bnp的迷向常数公式,进一步得到当n→∞和p→∞时其迷向常数的渐近性质。
3.
In this paper,the asymptotic properties of in the integral mean value theorem has been considered,and the main result have be obtained limx→aξ-ax-a=n n1+1,ξ∈[x,a].
利用L’Hospital法则、带Peano余项的Taylor公式研究了积分中值定理中值点ξ的渐近性质,得出如下渐近公式:limx→aξ-ax-a=n n1+1,ξ∈[x,a]。
5)  asymptotic behaviour
渐近性质
1.
The right rectangle formula was generalized,the asymptotic behaviour of mediant for the right rectangle formula and the generalized right rectangle formula were given.
本文得到推广的右矩形公式,并给出了右矩形公式和推广的右矩形公式中间点的渐近性质;还得到了右矩形公式的校正公式,它具有二次代数精度;进行了一些数值试验并收到较满意的数值结果。
2.
Focused on the asymptotic behaviour of mediant for fourth order Lagrange s mean value theorem and obtained the main results as followed(lim)x→aξ-ax-a=12 and(lim)x→aξ-ax-a=14n-44~n+3\52~(n+1)-4\53~n-4n(n-1)(n-2)(n-3).
对四阶拉格朗日中值定理中间点的渐近性质进行了研究,得到的主要结果是li mx→aξ-ax-a=21和lix→maxξ--aa=41n-4n4(n n+-31。
3.
Focused on the asymptotic behaviour of mediant for third order Lagrange s mean value theorem.
对三阶拉格朗日中值定理中间点的渐近性质进行了研究,得到的主要结果
6)  Rieman integral
渐行近性质
补充资料:渐近公式


渐近公式
asymptotic formula

  渐近公式}朋yolp肠cl栩.lula二~Irror~绷如甲My月a} 包含符号。,O或等价记号一(函数的渐近相等(as,mPtotiee甲ality))的公式 渐近公式的例f 牡n一丫二一x十口(义舌%*0、 )5戈l+‘)(义‘),、。0;茸、十芜川、一丫’℃一,关二 “(一‘,一下:_于“一笑(7r以)是不超过二的素数的个数,. ‘M,B因脚月撰【补注】关于符号。O和一的意义,例如见阵11或!AZ}.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条