1) asymptotic behavio(u)r
渐近特性,渐近行为,渐近性质
2) Rieman integral
渐行近性质
3) asymptotic characteristic
渐近特性
1.
This paper discusses the asymptotic characteristics of the temperature field in pure radiant heat transfer system with a heat source at constant temperature.
本文讨论了热源为常值的纯辐射换热系统温度场的渐近特性,对其热平衡方程组结出了稳定性的充分条件,且导出了稳定解。
4) asymptotic behavior
渐近性质
1.
Asymptotic behavior of thesolution of the neutron trans port equations with continuative energy and with generalized reflecting boundary conditions;
具广义边界条件及连续能量的中子迁移方程解的渐近性质
2.
We are interested in the asymptotic behavior of the solutions up(x,t) as p→∞ for N=1,when the initial value u0(x) has no compact support.
本文讨论了带吸收项的P-Laplace方程解当p→∞时的渐近性质。
3.
In this paper,we investigate the periodicity,asymptotic behavior and asymptotic stability of the solutions for difference equationxn+1=α+β(xpn-k)/(xpn-l)n=0,1,…where α≥0,β>0,p≠0,k and l are nonnegative integers,μ=max{k,l},and the initial values x-μ,x1-μ,…,x0 are arbitrary positive real numbers.
本文考虑差分方程xn+1=α+β(xpn-k)/(xpn-l)解的周期性、渐近性质和渐近稳定性。
5) asymptotic property
渐近性质
1.
A asymptotic property of mean-value for the generalized Cauchy s mean-value theorem;
广义Cauchy中值定理“中值”的一个渐近性质
2.
In this paper,it presents some criteria for the asymptotic property for a class of second-order nonlinear differential equation with damping.
研究了一类二阶非线性阻尼微分方程非振动解的渐近性质,建立了3个渐近性定理,改进了已知的结果。
3.
In the paper,a generalization of weighted average intermediate theorem are given,and its asymptotic property for intermediate point are given.
给出了加权平均介值定理的一个推广,并讨论了相应介值点的一个渐近性质。
6) asymptotic Properties
渐近性质
1.
The thesis gives asymptotic properties of the differential mean valueξcontained in Euler-Maclaurin numerical integral formula when the length of integral interval tends to be zero.
文章给出了Euler-Maclaurin数值求积公式中,当积分区间长度趋向于零时,微分平均值ξ的渐近性质。
2.
Moreover,asymptotic properties of isotropic constant of B~n_p is obtained as n→∞ and p→(∞.
该文证明当1≤p≤∞时,Bnp是迷向的凸体,并给出了Bnp的迷向常数公式,进一步得到当n→∞和p→∞时其迷向常数的渐近性质。
3.
In this paper,the asymptotic properties of in the integral mean value theorem has been considered,and the main result have be obtained limx→aξ-ax-a=n n1+1,ξ∈[x,a].
利用L’Hospital法则、带Peano余项的Taylor公式研究了积分中值定理中值点ξ的渐近性质,得出如下渐近公式:limx→aξ-ax-a=n n1+1,ξ∈[x,a]。
补充资料:渐行
1.诈行,以欺诈行事。 2.谓泡在(泥水)中行走。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条