1) tunneling magneto-Resistance(TMR)
隧穿型磁电阻
2) tunneling magnetoresistance
隧穿磁电阻
1.
The MTJs with tunneling magnetoresistance (TMR) ratio of 30%—48% can be directly obtained for the structure of Ta(5 nm)/Cu(25 nm)/Ni_ 79Fe_ 21(.
采用4nm厚的Co75Fe25为铁磁电极和1·0或0·8nm厚的铝氧化物为势垒膜,直接制备出了室温隧穿磁电阻(TMR)为30%—48%的磁性隧道结,其结构为Ta(5nm)/Cu(25nm)/Ni79Fe21(5nm)/Ir22Mn78(10nm)/Co75Fe25(4nm)/Al(0·8nm)-O/Co75Fe25(4nm)/Ni79Fe21(20nm)/Ta(5nm)。
2.
The typical values of junction resistance_area product and tunneling magnetoresistance (TMR) ratio of the MTJs are 16 kΩμm 2 and 18% respectively.
利用现有的光刻设备和工艺条件在 4英寸热氧化硅衬底上直接制备出的磁性隧道结 ,其结电阻与面积的积矢的绝对误差在 10 %以内 ,隧穿磁电阻的绝对误差在 7%以内 ,样品的磁性隧道结性质具有较好的均匀性和一致性 ,可以满足研制磁随机存储器存储单元演示器件的基本要
3.
For example, the MTJs of Co/Al 2O 3/Co with a tunneling magnetoresistance (TMR) ratio of 17 2%, the junction resistance of .
例如 :利用狭缝宽度为 1 0 0 μm的金属掩模 ,直接制备出室温隧穿磁电阻比值为 1 7 2 %的磁性隧道结Co Al2 O3 Co,其结电阻为 76Ω ,结电阻和结面积的积矢为 76× 1 0 4 Ωμm2 ,自由层的偏转场为 1 1 1 4A m ,并且在外加磁场 0— 1 1 1 4A·m- 1 之间时室温磁电阻比值从零跳跃增加到 1 7 2 % ,磁场灵敏度达到 0 1 % (1 0 3A·m- 1 ) 。
3) tunnel magnetoresistance
隧穿磁电阻
1.
Based on the twoband model,we investigate the tunnel magnetoresistance(TMR) in ferromagentic tunnel junction covered on both sides by nonmagnetic metal layers subjected to an electric field.
在两带模型的基础上,计算了外电场下有限厚铁磁层隧道结中的隧穿磁电阻(TMR)。
2.
The influence of thickness of insulator layer and magnetic semiconductor layer on the tunnel magnetoresistance(TMR) and conductance are studied for different Rashba spin-orbit coupling strength and the different angle θ between the two magnetic moments of the left and right magnetic semiconductor layer.
讨论了隧穿磁电阻(TMR)、隧穿电导与各材料层厚度、Rashba自旋轨道耦合强度以及两磁性半导体中磁矩的相对夹角θ之间的关系。
4) TMR
隧穿磁电阻
1.
In this article,a survey of the applications for giant-magnetoresistance(GMR) and tunneling magnetoresistance(TMR) as well as spin transfer is presented with the emphasis on the operative physical properties of the spintronic devices,including magnetic field sensors,galvanic isolators,read heads,random access memories,spin transfer switches and spin torque nano-oscillators.
本文介绍几种重要的磁电子器件的基本结构和工作原理,包括巨磁电阻与隧穿磁电阻传感器、巨磁电阻隔离器、巨磁电阻与隧穿磁电阻硬盘读出磁头、磁电阻随机存取存储器、自旋转移磁化反转与微波振荡器。
5) tunnel magnetic resistance
隧穿磁电阻
1.
By using the coherent quantum transport theory and transfer matrix method,the transmission coefficient and tunnel magnetic resistance for polarized electrons with different spin orientations through ferromagnetic/semiconductor/ferromagnetic tunnel junctions are investigated.
采用相干量子输运理论和传递矩阵方法研究了具有不同自旋指向的极化电子渡越铁磁/半导体/铁磁隧道结的隧穿几率和隧穿磁电阻。
6) tunnelling magnetoresistance
隧穿磁电阻(TMR)
1.
The mechanism,characteristics,primary applications,background,and latest research on the tunnelling magnetoresistance effects of magnetic tunnel junctions(MTJs) are reviewed.
文章概括地介绍了磁性隧道结(MTJs)的隧穿磁电阻(TMR)效应的产生机理和特点,主要用途和研究背景以及最近几年的研究进展和现状。
补充资料:磁铅石型旋磁铁氧体
分子式:
CAS号:
性质:晶体结构和天然磁铅石Pb(Fe7.5Mn3.5A10.5Ti0.5)19类似的铁氧体称为磁铅石型铁氧体。其结构对称性较尖晶石型的为低。其中晶体具有各向异性大、矫顽力高的六角晶系铁氧体,称为磁铅石型微波铁氧体。主要有M型(BaFe12O19)和W型(BaM2+2Fel6O27),M为锰、钴、镍、锌、镁等二价金属离子。通过离子代换部分Ba2+,可获得BaO-MO-Fe2O3三元系的磁铅石型复合铁氧体,并可使各向异性场在一定范围内变化。制造方法可用一般磁性瓷生产工艺,热压烧结或气氛烧结制成。用于微波频段,可制成隔离器、相移器、调制器、环行器等线性器件和倍频器、限幅器、振荡器、混频器、参量放大器等非线性器件。是发展现代微波技术的重要材料。
CAS号:
性质:晶体结构和天然磁铅石Pb(Fe7.5Mn3.5A10.5Ti0.5)19类似的铁氧体称为磁铅石型铁氧体。其结构对称性较尖晶石型的为低。其中晶体具有各向异性大、矫顽力高的六角晶系铁氧体,称为磁铅石型微波铁氧体。主要有M型(BaFe12O19)和W型(BaM2+2Fel6O27),M为锰、钴、镍、锌、镁等二价金属离子。通过离子代换部分Ba2+,可获得BaO-MO-Fe2O3三元系的磁铅石型复合铁氧体,并可使各向异性场在一定范围内变化。制造方法可用一般磁性瓷生产工艺,热压烧结或气氛烧结制成。用于微波频段,可制成隔离器、相移器、调制器、环行器等线性器件和倍频器、限幅器、振荡器、混频器、参量放大器等非线性器件。是发展现代微波技术的重要材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条