说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 变系数耦合KdV方程组
1)  coupled KdV equations with variable coefficients
变系数耦合KdV方程组
2)  variable-coefficient of the coupled KdV equations
变系数耦合KdV方程
3)  variable coefficient combined KdV equation
变系数组合KdV方程
1.
The auxiliary equation for constructing the exact solutions of the variable coefficient combined KdV equation with forcible term;
辅助方程构造带强迫项变系数组合KdV方程的精确解
2.
Explicit and exact solutions to the variable coefficient combined KdV equation with forced term;
带强迫项变系数组合KdV方程的显式精确解
4)  variable coefficient combined kdv-Burgers equation
变系数组合kdv-Burgers方程
1.
Using Mathematica software and two generalized Riccati equations,exact solutions of the variable coefficient combined kdv-Burgers equation with forced term are obtained.
借助Mathematica软件和两个推广形式的Riccati方程组,求出了带强迫项变系数组合kdv-Burgers方程的一些精确解,包括各种类孤立波解、类周期解和变速孤立波解。
5)  KdV equations with variable coefficients
变系数KdV方程组
1.
In this paper,by using the homogenous balance principle and F-expansion method,the periodic wave solutions expressed by Jacobi elliptic fuctions to the KdV equations with variable coefficients are derived,and in the limit case,the solitary wave solutions and other type solutions for KdV equations with variable coefficients equations are obtained as well.
利用F-展开法和齐次平衡原则,求出了变系数KdV方程组的Jacobi椭圆函数表示的周期解,在极限情况下,得到变系数KdV方程组的孤波解以及其它形式的解。
6)  coupled KdV equations
耦合KdV方程组
1.
The auxiliary equation for constructing the exact solutions of coupled KdV equations
辅助方程构造耦合KdV方程组的精确解
2.
We will attempt to solve a coupled KdV equations by using two methods which are very effective in solving a large class of nonlinear evolution equations,namely,Jacobi elliptic function expansion method and F-expansion method.
尝试用Jacobi椭圆函数展开法和F展开法来求解耦合KdV方程组。
3.
Using linear and nonlinear functional transformation and integral differential equation,some explicit exact solutions of a class of nanlinear coupled KdV equations are given concisely.
用线性、非线性函数变换和可积的微分方程,非常简便地得到了一类非线性耦合KdV方程组的若干显式精确解,其中包括线性、非线性相关的解析解。
补充资料:殆周期系数的线性微分方程组


殆周期系数的线性微分方程组
titial equations with almost-periodic coefficients linear system of differ-

殆周期系数的线性微分方程组〔】如犯ar阿s。,llof山fl沁r-即血l冈调d昵雨山汕眼‘t一伴ri团icc此fficients;服-“e益“a”e“eTeMa八“中中ePe“”“a几‘n以即皿“e“u面eno叱T“。eP“o八“,ee以M“即,中巾“双“e”TaM“} 常微分方程组 又=A(t).、+f(t).x‘R”.门)其中A(·):R一Hom(R”R”),f(·):R~R“为殆周期映射(见殆周期函数(a】n10st一详百(对ic仙Ic-tion)).按坐标写出,则有形式 又’一,冬a;(‘)x’+f‘(r),,一,,…,n,其中叫(t)和了‘(t)(i .J=1,,·,。)为殆周期实值函数.这种方程组的出现与B曲r殆周期函数(Bohr川n1Ost,peri《xli。且川Ctio、)有关(见{1」).对一类范围较狭的方程组(其中A(t)和f(t)为拟周期映射,见拟周期函数(q珑巧i一periodic function))更早就有兴趣,这同沿着天体力学方程的条件周期解去考虑变分方程有关. 如果齐次方程组 交=A(t)x(2)是积分分离的(见积分分离条件(加eg飞11 seperat10ncondi石on)),则它可通过(关于t的、殆周期瓜ny-HOB变换(Lyapunov transformation)x=L(r)夕化成殆周期系数的对角方程组乡=B(t)厂即对于它所化成的方程组,存在R”的一个与t无关的基,这个基由对每个任R,算子B(t)的本征向量组成.在关于这个基的坐标下,方程组夕=B(t)y可写成对角形式: 乡‘二酬(t)y’,i=1,’“,”· 在殆周期系数方程组(2)的空间中赋予度量 d(通,,通2)=sup!I火,(t)一且2(t)11, t‘R具有积分分离的方程组的集合是开集.下述定理成立:设A(r)=C+:D(r),这里C任Hom(R”R”),C的本征值都为不同实数,月.D(·)为殆周期映射R~Hom(R”,R”),则存在叮>0,使得对所有满足}:}<泞的:,方程组(2)可通过(关于t的)殆周期丑只rly日oB变换化为具有殆周期系数的对角方程组. 对于殆周期映射A(r):R一Hom(R”,R”),下述四个论断等价:1)对每个殆周期映射f〔·):R一R”,存在方程组(l)的殆周期解;2)存在方程组(2)解的指数二分性(dichotomy);3)方程组又=万(t)x,其中万(t)=腼*一,。A(t*+t),没有非零有界解;4)对于每个有界映射f(t):R”一,R”,方程组(l)具有有界解..,.一人儿吊似万万桂气D疏r贪币al叫ua石on,o记让1-ary)及其参考文献.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条