1) combined KdV equation
组合KdV方程
1.
Explicit and exact solutions of the combined KdV equation;
组合KdV方程的显式精确解
2.
With the aid of computer algebra system Mathematica and by using the improved hyperbolic function method, a series of solitary wave solutions of the combined KdV equation are obtained.
借助计算机代数系统Mathematica,利用改进的双曲函数法得到了组合KdV方程的一系列孤立波解,并利用待定系数法得到了其扭结型孤立波解。
3.
A LBGK model for simulating solitary waves of the combined KdV equation,ut+6uux-θu2ux+uxxx=0is established.
构造了一个求解组合KdV方程ut+6uux-θu2ux+uxxx=0孤立波解的BGK型格子Boltzmann模型。
2) generalized compound KdV equation
广义组合KdV方程
1.
Conditional stability of the solitary wave solutions for the generalized compound KdV equation and generalized compound KdV-Burgers equation;
广义组合KdV方程与广义组合KdV-Burgers方程孤波解的条件稳定性
3) coupled KdV equations
耦合KdV方程组
1.
The auxiliary equation for constructing the exact solutions of coupled KdV equations
辅助方程构造耦合KdV方程组的精确解
2.
We will attempt to solve a coupled KdV equations by using two methods which are very effective in solving a large class of nonlinear evolution equations,namely,Jacobi elliptic function expansion method and F-expansion method.
尝试用Jacobi椭圆函数展开法和F展开法来求解耦合KdV方程组。
3.
Using linear and nonlinear functional transformation and integral differential equation,some explicit exact solutions of a class of nanlinear coupled KdV equations are given concisely.
用线性、非线性函数变换和可积的微分方程,非常简便地得到了一类非线性耦合KdV方程组的若干显式精确解,其中包括线性、非线性相关的解析解。
4) compound KdV-Burgers equation
组合KdV-Burgers方程
1.
Computational methods for a class compound KdV-Burgers equation;
一类组合KdV-Burgers方程的数值解法
5) combined Kdv-mKdV equation
组合KdV-mKdV方程
1.
New exact solitary wave solutions of the Burgers equation,combined KdV-mKdV equation and Fisher equation are constructed by replacing the tanh-function with the combinations of the exponential functions.
把双曲正切函数法中双曲正切函数替换成由指数函数组合而成的复合函数,并构造了Burgers方程和组合KdV-mKdV方程以及Fisher方程新的精确孤立波解。
6) Combined KdV mKdV equation
组合的KdV-mKdV方程
补充资料:Kdv方程
Image:11776596881617173.jpg
kdv方程是1895年由荷兰数学家科特韦格和德弗里斯共同发现的一种偏微分方程(也有人称之为科特韦格-德弗里斯方程,但一般都习惯直接叫kdv方程)。
kdv方程的解为簇集的孤立子(又称孤子,孤波)。
kdv方程和物理问题有几个联系。 它是弦在fermi-pasta-ulam问题在连续极限下的统治方程。kdv方程也描述弱非线性回复力的浅水波。
kdv方程也可以用逆散射技术求解,譬如那些适用于薛定谔方程的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。