1) the variable coefficient combined KdV equation with forced term
带强迫项变系数组合KdV方程
2) KdV equation with forcing term
带有强迫项的KdV方程
3) variable coefficient combined KdV equation
变系数组合KdV方程
1.
The auxiliary equation for constructing the exact solutions of the variable coefficient combined KdV equation with forcible term;
辅助方程构造带强迫项变系数组合KdV方程的精确解
2.
Explicit and exact solutions to the variable coefficient combined KdV equation with forced term;
带强迫项变系数组合KdV方程的显式精确解
4) variable coefficient combined kdv-Burgers equation
变系数组合kdv-Burgers方程
1.
Using Mathematica software and two generalized Riccati equations,exact solutions of the variable coefficient combined kdv-Burgers equation with forced term are obtained.
借助Mathematica软件和两个推广形式的Riccati方程组,求出了带强迫项变系数组合kdv-Burgers方程的一些精确解,包括各种类孤立波解、类周期解和变速孤立波解。
5) coupled KdV equations with variable coefficients
变系数耦合KdV方程组
6) KdV equations with variable coefficients
变系数KdV方程组
1.
In this paper,by using the homogenous balance principle and F-expansion method,the periodic wave solutions expressed by Jacobi elliptic fuctions to the KdV equations with variable coefficients are derived,and in the limit case,the solitary wave solutions and other type solutions for KdV equations with variable coefficients equations are obtained as well.
利用F-展开法和齐次平衡原则,求出了变系数KdV方程组的Jacobi椭圆函数表示的周期解,在极限情况下,得到变系数KdV方程组的孤波解以及其它形式的解。
补充资料:Kdv方程
Image:11776596881617173.jpg
kdv方程是1895年由荷兰数学家科特韦格和德弗里斯共同发现的一种偏微分方程(也有人称之为科特韦格-德弗里斯方程,但一般都习惯直接叫kdv方程)。
kdv方程的解为簇集的孤立子(又称孤子,孤波)。
kdv方程和物理问题有几个联系。 它是弦在fermi-pasta-ulam问题在连续极限下的统治方程。kdv方程也描述弱非线性回复力的浅水波。
kdv方程也可以用逆散射技术求解,譬如那些适用于薛定谔方程的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。