1) diffeomorphism group
微分同胚群
2) diffeomorphism
微分同胚
1.
In this paper,we discuss smoothly conjugating equivalence of some local diffeomorphisms with hy- perbolic fixed points on finite dimensional space.
考虑有限维线性空间中的一类局部微分同胚在双曲不动点O附近的光滑共轭等价问题。
2.
In the paper several counterexamples of diffeomorphism used in analysis are constructed.
文章构造了微分同胚在分析学中的一些反例,对点集拓扑,泛函分析中相关问题的理解和认识有益处。
3.
We mainly discuss that diffeomorphism can keep Poisson structure on Poisson manifold.
讨论了微分同胚对Poisson流形上Poisson结构的保持 ,得到了微分同胚所诱导的Poisson括号的一些性质 ,最后 ,还得到了有关Poisson流形上的Casimir函数在微分同胚作用下仍然是Casimir函数这一有用的定
3) diffeomorphic
微分同胚
1.
In this paper, we study the property of Riemannian manifold satisfying Nash inequality, and prove that for any complete n-dimensional Riemannian manifold with nonnegative Ricci curvature, if the Nash inequality is satisfied and the Nash constant is more than the best Nash constant, then the manifold is diffeomorphic to Rn.
本文通过对满足Nash不等式的黎曼流形的研究,证明了对任一完备的Ricci曲率非负的n维黎曼流形,若它满足Nash不等式,且Nash常数大于最佳Nash常数,则它微分同胚于Rn。
2.
In this paper, we use the property of the smooth cut-off function to prove the following result: for any n-dimensional complete Riemannian manifold with nonnegative Ricci curvature, if one of the Nash inequalities is satisfied, then it is diffeomorphic to Rn .
运用光滑截断函数的性质,证明了对任一n维完备的黎曼流形,若它的Ricci曲率非负,且满足一个Nash不等式,则它微分同胚于Rn。
3.
It is paper our proved that a complete noncompact n-dimensional Riemanian manifolds M with Ric(M)≥-(n-1) is of a finite topological type or is diffeomorphic to Rn when its excess is bounded by a constant.
证明了Ric(M)≥-(n-1)完备非紧的n维黎曼流形M,若其上某一点的Excess函数有上界(常数)时,M就具有有限拓扑型或微分同胚于Rn。
4) CR diffeomorphism
CR微分同胚
1.
Every smooth CR homeomorphism from a real hypersurface of finite type to a real hypersurface in C~n is a CR diffeomorphism.
证明了Cn中有限型实超曲面到另一个实超曲面的每一个光滑CR同胚必定是CR微分同胚。
5) Anosov diffeoemorphism
Anosov微分同胚
6) diffeomorphism transformation
微分同胚变换
1.
Due to its underactuated characteristic, two sub-systems are obtained based on the diffeomorphism transformation and input transform.
针对其欠驱动的特性,借助微分同胚变换及控制输入变换将其转化为两个子系统,分别设计状态反馈控制律,从而得到了原系统的具有指数收敛速率的时变光滑反馈镇定律,实现闭环系统所有状态全局指数收敛至平衡点。
补充资料:同胚群
同胚群
同胚群【加.皿业户阮19叮Ip;~。oMop今.3M始r衅-nnal 把拓扑空间X映成自身的所有同胚映射组成的群皿(X)(亦见同胚(加~叨中比m职若X为紧流形,则除了同胚不计外,X由叭(X)的代数性质,特别是叭(X)的正规子群的结构所确定(【IJ).特别,当n砖4时,已知叭(罗)是单群(血甲卜g旧uP).对于Cal曲吐集(C缸ltorset),M响笋曲线(M。玛盯cur-ve),撇咖诬i曲线(s祀rp此ki~)以及实数直线上的有理点集与无理点集也都是如此(【2」).就流形M而言,叨(M)中的最小正规子群是在M的外部区域为恒同映射的那些同胚产生的子群. 群观(X)有各种不同的拓扑结构(见拓扑映射空间(sP别羌oflr坦PPln邵,topo沁乡司))具有基本重要性的有紧开拓扑(①mP叭一。岁,勿和拓罗)以及精细的C“拓扑(X是可度量化空间),其中恒同映射的邻域乌由严格正函数广X~(o,co)定义,并且h‘侧X)属于Of,如果对所有x有p(hx,x)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条