说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 微分同胚约束的解
1)  solution of diffeomorphism constraint
微分同胚约束的解
2)  diffeomorphism constraint
微分同胚约束
1.
They satisfy the homogeneous diffeomorphism constraint ( D constraint).
以扩展的Gauss不变量 φG 和Jones多项式第二个系数J2 为基本片段 ,构造了满足齐次微分同胚约束 (D 约束 )的扩展knot不变量引力态 φG J2 ,( J2 ) 2 和 ( φG) 2 J2 。
2.
By a different way, we particularized the action of the diffeomorphism constraint (D constraint) on the abstract wave function in the extended loop representation to the action in the loop representation.
以不同方法将微分同胚约束 (D约束 )对扩展圈表象抽象波函数的作用特殊化到圈表象上 。
3)  diffeomorphism constraint operator
微分同胚约束算符
4)  analytic diffeomorphism
解析微分同胚
5)  diffeomorphism
微分同胚
1.
In this paper,we discuss smoothly conjugating equivalence of some local diffeomorphisms with hy- perbolic fixed points on finite dimensional space.
考虑有限维线性空间中的一类局部微分同胚在双曲不动点O附近的光滑共轭等价问题。
2.
In the paper several counterexamples of diffeomorphism used in analysis are constructed.
文章构造了微分同胚在分析学中的一些反例,对点集拓扑,泛函分析中相关问题的理解和认识有益处。
3.
We mainly discuss that diffeomorphism can keep Poisson structure on Poisson manifold.
讨论了微分同胚对Poisson流形上Poisson结构的保持 ,得到了微分同胚所诱导的Poisson括号的一些性质 ,最后 ,还得到了有关Poisson流形上的Casimir函数在微分同胚作用下仍然是Casimir函数这一有用的定
6)  diffeomorphic
微分同胚
1.
In this paper, we study the property of Riemannian manifold satisfying Nash inequality, and prove that for any complete n-dimensional Riemannian manifold with nonnegative Ricci curvature, if the Nash inequality is satisfied and the Nash constant is more than the best Nash constant, then the manifold is diffeomorphic to Rn.
本文通过对满足Nash不等式的黎曼流形的研究,证明了对任一完备的Ricci曲率非负的n维黎曼流形,若它满足Nash不等式,且Nash常数大于最佳Nash常数,则它微分同胚于Rn。
2.
In this paper, we use the property of the smooth cut-off function to prove the following result: for any n-dimensional complete Riemannian manifold with nonnegative Ricci curvature, if one of the Nash inequalities is satisfied, then it is diffeomorphic to Rn .
运用光滑截断函数的性质,证明了对任一n维完备的黎曼流形,若它的Ricci曲率非负,且满足一个Nash不等式,则它微分同胚于Rn。
3.
It is paper our proved that a complete noncompact n-dimensional Riemanian manifolds M with Ric(M)≥-(n-1) is of a finite topological type or is diffeomorphic to Rn when its excess is bounded by a constant.
证明了Ric(M)≥-(n-1)完备非紧的n维黎曼流形M,若其上某一点的Excess函数有上界(常数)时,M就具有有限拓扑型或微分同胚于Rn。
补充资料:Y微分同胚


Y微分同胚
- (tiffeomorphism

Y微分同胚[Y一由肠印和。卿“,;Y一压“中中e服叩中邢M] 生成y系统(Y一systeln)的微分同胚.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条