1) normal forms of diffeomorphism
微分同胚正规形
1.
Using the theory of normal forms of diffeomorphism and according to nonlinear participation factors, a more accurate method to decide the location to implement load control or the place to allocate static var compensator (SVC) is proposed.
应用微分同胚正规形理论,以非线性参与因子为依据,提出了确定实施负荷控制的地点及静止无功补偿(static var compensator,SVC)安装地点的更准确方法。
2.
For the study of the reactive power compensation,this paper analyzes the power system power flow equations by using the theory of normal forms of diffeomorphism.
无功功率的合理补偿是电力系统稳定性和安全运行的一个重要因素,为研究其补偿方式,采用微分同胚正规形理论分析电力系统的潮流方程,提出了以节点电压非线性参与因子为指标来衡量电力系统中不同节点无功功率对静态电压稳定性的影响程度的方法。
2) diffeomorphism
微分同胚
1.
In this paper,we discuss smoothly conjugating equivalence of some local diffeomorphisms with hy- perbolic fixed points on finite dimensional space.
考虑有限维线性空间中的一类局部微分同胚在双曲不动点O附近的光滑共轭等价问题。
2.
In the paper several counterexamples of diffeomorphism used in analysis are constructed.
文章构造了微分同胚在分析学中的一些反例,对点集拓扑,泛函分析中相关问题的理解和认识有益处。
3.
We mainly discuss that diffeomorphism can keep Poisson structure on Poisson manifold.
讨论了微分同胚对Poisson流形上Poisson结构的保持 ,得到了微分同胚所诱导的Poisson括号的一些性质 ,最后 ,还得到了有关Poisson流形上的Casimir函数在微分同胚作用下仍然是Casimir函数这一有用的定
3) diffeomorphic
微分同胚
1.
In this paper, we study the property of Riemannian manifold satisfying Nash inequality, and prove that for any complete n-dimensional Riemannian manifold with nonnegative Ricci curvature, if the Nash inequality is satisfied and the Nash constant is more than the best Nash constant, then the manifold is diffeomorphic to Rn.
本文通过对满足Nash不等式的黎曼流形的研究,证明了对任一完备的Ricci曲率非负的n维黎曼流形,若它满足Nash不等式,且Nash常数大于最佳Nash常数,则它微分同胚于Rn。
2.
In this paper, we use the property of the smooth cut-off function to prove the following result: for any n-dimensional complete Riemannian manifold with nonnegative Ricci curvature, if one of the Nash inequalities is satisfied, then it is diffeomorphic to Rn .
运用光滑截断函数的性质,证明了对任一n维完备的黎曼流形,若它的Ricci曲率非负,且满足一个Nash不等式,则它微分同胚于Rn。
3.
It is paper our proved that a complete noncompact n-dimensional Riemanian manifolds M with Ric(M)≥-(n-1) is of a finite topological type or is diffeomorphic to Rn when its excess is bounded by a constant.
证明了Ric(M)≥-(n-1)完备非紧的n维黎曼流形M,若其上某一点的Excess函数有上界(常数)时,M就具有有限拓扑型或微分同胚于Rn。
4) CR diffeomorphism
CR微分同胚
1.
Every smooth CR homeomorphism from a real hypersurface of finite type to a real hypersurface in C~n is a CR diffeomorphism.
证明了Cn中有限型实超曲面到另一个实超曲面的每一个光滑CR同胚必定是CR微分同胚。
5) diffeomorphism group
微分同胚群
6) Anosov diffeoemorphism
Anosov微分同胚
补充资料:Y微分同胚
Y微分同胚
- (tiffeomorphism
Y微分同胚[Y一由肠印和。卿“,;Y一压“中中e服叩中邢M] 生成y系统(Y一systeln)的微分同胚.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条