说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 可微同胚
1)  differentiable homeomorphism
可微同胚
1.
In this paper, chaos behavior of two - dimensional differentiable homeomorphism is discussed.
本文讨论了二维可微同胚映射的浑沌现象,并给出一个更为直接的,易于验证的充分条件。
2)  diffeomorphism
微分同胚
1.
In this paper,we discuss smoothly conjugating equivalence of some local diffeomorphisms with hy- perbolic fixed points on finite dimensional space.
考虑有限维线性空间中的一类局部微分同胚在双曲不动点O附近的光滑共轭等价问题。
2.
In the paper several counterexamples of diffeomorphism used in analysis are constructed.
文章构造了微分同胚在分析学中的一些反例,对点集拓扑,泛函分析中相关问题的理解和认识有益处。
3.
We mainly discuss that diffeomorphism can keep Poisson structure on Poisson manifold.
讨论了微分同胚对Poisson流形上Poisson结构的保持 ,得到了微分同胚所诱导的Poisson括号的一些性质 ,最后 ,还得到了有关Poisson流形上的Casimir函数在微分同胚作用下仍然是Casimir函数这一有用的定
3)  diffeomorphic
微分同胚
1.
In this paper, we study the property of Riemannian manifold satisfying Nash inequality, and prove that for any complete n-dimensional Riemannian manifold with nonnegative Ricci curvature, if the Nash inequality is satisfied and the Nash constant is more than the best Nash constant, then the manifold is diffeomorphic to Rn.
本文通过对满足Nash不等式的黎曼流形的研究,证明了对任一完备的Ricci曲率非负的n维黎曼流形,若它满足Nash不等式,且Nash常数大于最佳Nash常数,则它微分同胚于Rn。
2.
In this paper, we use the property of the smooth cut-off function to prove the following result: for any n-dimensional complete Riemannian manifold with nonnegative Ricci curvature, if one of the Nash inequalities is satisfied, then it is diffeomorphic to Rn .
运用光滑截断函数的性质,证明了对任一n维完备的黎曼流形,若它的Ricci曲率非负,且满足一个Nash不等式,则它微分同胚于Rn。
3.
It is paper our proved that a complete noncompact n-dimensional Riemanian manifolds M with Ric(M)≥-(n-1) is of a finite topological type or is diffeomorphic to Rn when its excess is bounded by a constant.
证明了Ric(M)≥-(n-1)完备非紧的n维黎曼流形M,若其上某一点的Excess函数有上界(常数)时,M就具有有限拓扑型或微分同胚于Rn。
4)  CR diffeomorphism
CR微分同胚
1.
Every smooth CR homeomorphism from a real hypersurface of finite type to a real hypersurface in C~n is a CR diffeomorphism.
证明了Cn中有限型实超曲面到另一个实超曲面的每一个光滑CR同胚必定是CR微分同胚。
5)  diffeomorphism group
微分同胚群
6)  Anosov diffeoemorphism
Anosov微分同胚
补充资料:Y微分同胚


Y微分同胚
- (tiffeomorphism

Y微分同胚[Y一由肠印和。卿“,;Y一压“中中e服叩中邢M] 生成y系统(Y一systeln)的微分同胚.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条