1) (4)vertex-panconnected
(4)点-泛连通
2) panpathical vertex pair
泛连通性点对
1.
We prove that there exists at least a panpathical vertex pair in every connected but not strongly connected tournament and the panpathical vertex pairs can be found in polynomial times.
证明了每个连通的但非强连通的竞赛图中至少存在一个泛连通性点对且该点对可在多项式时间内找到。
3) panconnected graph
泛连通图
4) panconnectivity
泛连通性
1.
We get the following result on panconnectivity of graphs: let G be a connected graph of ordern,if d(u) +d(v) ≥n for all pairs of venices u and v that are at distance two, then the graph G is a [5 n] -panconneded graph if and only if G is a H-Connected graph.
文中证明了关于图的泛连通性的下述结果:设G为n阶连通图,且对G中任一对距离为2的顶点u,v,有d(u)+d(v)≥n,则图G是[5n]-泛连通的当且仅当G是H连通的。
5) panconnected
泛连通
1.
A graph G is Hamiltonian-connected if every pair of distinct vertices u and vare joined by a Hamiltonian path,and panconnected if u and v are joined by paths of alllengths q,for d(u,v)≤q≤n-1(where d(u,v)is the distance between u and v,and n is theorder of G).
如果图G的每对不同顶点u和v之间都有哈密顿路相连,则称G是哈密顿连通的;而如果对于所有满足条件以d(u,v)≤q≤n-1的整数q,u和v之间有长为q路相连,则和G是泛连通的,其中以d(u,v)是u和v间的距离,而n是G的顶点数。
6) [a b]-panconnectivity
[ab]-泛连通
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条