1) connected functional
连通泛函
2) continuous functional
连续泛函
1.
That is,first construct interpolation networks in general spaces,and then construct approximate interpolation networks,finally,study the approximation of continuous functional with approximating network.
本文研究一般距离空间中的神经网络插值与逼近问题,即先在距离空间中构造新的插值网络,然后在此基础上构造近似插值网络,最后研究近似插值网络对连续泛函的逼近。
2.
The completement and continuous functional of double sequence space Lpq are discussed.
讨论二重序列空间Lpq的完备性及连续泛
3) panconnected graph
泛连通图
4) panconnectivity
泛连通性
1.
We get the following result on panconnectivity of graphs: let G be a connected graph of ordern,if d(u) +d(v) ≥n for all pairs of venices u and v that are at distance two, then the graph G is a [5 n] -panconneded graph if and only if G is a H-Connected graph.
文中证明了关于图的泛连通性的下述结果:设G为n阶连通图,且对G中任一对距离为2的顶点u,v,有d(u)+d(v)≥n,则图G是[5n]-泛连通的当且仅当G是H连通的。
5) panconnected
泛连通
1.
A graph G is Hamiltonian-connected if every pair of distinct vertices u and vare joined by a Hamiltonian path,and panconnected if u and v are joined by paths of alllengths q,for d(u,v)≤q≤n-1(where d(u,v)is the distance between u and v,and n is theorder of G).
如果图G的每对不同顶点u和v之间都有哈密顿路相连,则称G是哈密顿连通的;而如果对于所有满足条件以d(u,v)≤q≤n-1的整数q,u和v之间有长为q路相连,则和G是泛连通的,其中以d(u,v)是u和v间的距离,而n是G的顶点数。
6) [a b]-panconnectivity
[ab]-泛连通
补充资料:连续泛函
连续泛函
continuous functional
连续泛函Icon6皿ous fu.比onai;谈网阵件..曰.切皿-”“口困‘】] 把拓扑空间X(它通常也是向量空间)映射到R或C中的连续算子(contm以)us opemtor)(连续映射(田ntit田璐讯apping)),因此,对于任意算子的连续性定义和准则对于泛函仍保持成立.例如, l)为使泛函f:M一C(其中M是拓扑空间X的子集)在点从,任M上连续,必须对于任何“>O,存在x()的邻域U‘使得}f(劝一f(苏))}<。对于x任U成_侧泛函的连续性定义); 2)在分离拓扑向量空间的紧集上连续的泛函在该集合上有界,且达到它的上、下确界(,几记巧姗“牢稗(Wele侣位巧5 lj袱〕n习刀)): 3)因为每个非零线性泛函把Banach空间X映射_,‘r、_阶以非芍一一_、一也崔
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条