1) cyclely-4-edge-connected
圈4-边连通
2) cyclic edge connectivity
圈边连通度
1.
Efficient algorithm for cyclic edge connectivity of planar graphs
平面图圈边连通度的有效算法
3) cyclically optimal
最优圈边连通图
1.
A cyclically separable graph G with cλ(G)=ζ(G) is said to be cyclically optimal.
如果一个圈可分离图G有cλ(G)=ζ(G),则称它为最优圈边连通图。
4) super cyclically edge-connected
超圈边连通图
1.
We call a graph super cyclically edge-connected,if the removal of any minimum cyclic edge-cut results in a component which is a shortest cycle.
对一个最优圈边连通图来说,如果删除任意一个最小的圈边割集会使一个分支恰好是一个最短圈,那么我们称这样的图为超圈边连通图。
5) 4-connected
4-连通
1.
Let G be a 4-connected tough graphs of order n,if σ_5(G)≥n+C(G)-1,then every longest cycle in G is a dominating cycle.
设G为4-连通1-坚韧的n阶非Ham ilton图,C为G的最长圈,若σ5(G)≥n+C(G)-1,则C是G的控制圈。
6) 4-connected graph
4连通图
1.
In this paper by ananlyzing the properties of edge-vertex cut end we show that in a 4-connected graph G with minimum degree at least five or girth at least four,there are at least two removable edges in a spanning tree of G;in a 4-connected graph G with minimum degree at least five,there are at least two removable edges outsi.
利用边点割端片的性质给出某些4连通图中在特定子图上可去边的分布情况,得到了最小度至少为5或围长至少为4的4连通图中在其生成树上存在至少两条可去边;同时也得到了最小度至少为5的4连通图中在其生成树外存在至少两条可去边。
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条