1) vertex connectivity
点连通度
1.
G is a simple graph with a(G) and k(G) , its algebraic and vertex connectivity.
a(G),k(G)分别为G的代数连通度和点连通度,该文刻画了满足a(G)=k(G)的图。
2.
Let G be a connected graph of order n whose algebraic connectivity, vertex connectivity, and edge connectivity are α(G), κ(G), and λ(G), respectively.
n阶连通图G的代数连通度、点连通度和边连通度分别记作α(G) ,κ(G)和λ(G) 。
2) vertex(edge)-connectivity
点(边)连通度
3) vertex connectivity
[顶]点连通度
4) cyclic vertex-connectivity
环点连通度
1.
Further,the relation between the cyclic connectivity and the cyclic vertex-connectivity of G is discussed.
讨论了G的环连通度与环点连通度之间的关系,指出当G的顶点个数不少于其环连通度的6倍时,其环连通度等于其环点连通度。
5) vertex connectivity K(G)
点连通度K(G)
6) graph vertax connectivity
图的顶点连通度
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条