1) 4-connected
4-连通
1.
Let G be a 4-connected tough graphs of order n,if σ_5(G)≥n+C(G)-1,then every longest cycle in G is a dominating cycle.
设G为4-连通1-坚韧的n阶非Ham ilton图,C为G的最长圈,若σ5(G)≥n+C(G)-1,则C是G的控制圈。
2) 4-connected graph
4连通图
1.
In this paper by ananlyzing the properties of edge-vertex cut end we show that in a 4-connected graph G with minimum degree at least five or girth at least four,there are at least two removable edges in a spanning tree of G;in a 4-connected graph G with minimum degree at least five,there are at least two removable edges outsi.
利用边点割端片的性质给出某些4连通图中在特定子图上可去边的分布情况,得到了最小度至少为5或围长至少为4的4连通图中在其生成树上存在至少两条可去边;同时也得到了最小度至少为5的4连通图中在其生成树外存在至少两条可去边。
3) 4-adjacent connection
4-连通区域
1.
A class of special 4-adjacent connection areas can t be filled completely by scanline algorithm for filling area with pushing span-ends.
指出压入区段端点的区域填充扫描线算法对一类特殊4-连通区域有可能产生漏填。
2.
A class of special 4-adjacent connection can t be filled completely by scanline algorithm for filling area with pushing span-ends,the paper improves it by using a 4-direction-expanding method of repeating writing of the left end of the span,which is based on the correlation of pixels and the coherence of the scanning of the area.
指出压入区段端点的区域填充扫描线算法对一类特殊4-连通区域有可能产生漏填,利用像素间的相关性和区域在扫描线上的连贯性提出了采用“重写区段左端点”的4向填充方法进行改进;通过分析原算法中仍然存在的像素点颜色判读的重复操作,提出了压入新、旧区段的区域填充扫描线算法并给出算法的描述;典型的填充测试证明了本算法的正确性和高效性。
4) cyclely-4-edge-connected
圈4-边连通
5) (4)vertex-panconnected
(4)点-泛连通
6) 4-strong tournaments
4-强连通竞赛图
补充资料:单连通区域
单连通区域
simply -connected domain
单连通区域国m两刁那倪d印d佣.山l;0朋oc朋3“阴o6朋c‘〕,在道路连通空间中的 一个区域D,在这区域中,所有的闭道路都同伦于0,或换句话说,该区域,它的基本群(丘uldanrntal卿叩)是平凡的.这意味着,D中任何闭道路可连续地形变为一个点,且自始至终保持在该单连通区域D中.一般情形下,单连通区域D的边界可由任意k(O簇k蕊的)个连通分支组成,甚至在Eu动d空间R”(n)2)或Cm(m)l)中的单连通区域的情形也如此.有界的平面单连通区域的边界由单个的连通分支组成.所有平面单连通区域是彼此同胚的. 也见极限元素(场面t elerrlents). E.及O劝。职叱川阳撰【补注】更一般地,一个单连通空间(simPly一connec-初sPace)X是一个道路连通空间,对于它,每一条闭路都是可缩的,即X的基本群门初ldamen扭lgro叩)兀1(X,x)对某个(且因此对所有的)基点x为零.球面S”(。)2)是单连通的,但二维环面和C中的圆环不单连通.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条