说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 柯西微分中值定理的积分形式
1)  Cauchy's mean-value theorem in integral form
柯西微分中值定理的积分形式
2)  Cauchy's mean value theorem in integral form
积分形式的Cauchy中值定理
3)  Cauchy integral theorem
柯西积分定理
1.
A class of real integral was solved by using the Cauchy integral theorem.
应用柯西积分定理解决一类实积分的计算问题。
2.
A discussion on some characterized mapping conclusions similar to Cauchy integral theorem.
讨论具有某种特征映射的类似柯西积分定理的结论 。
4)  principal value of Cauchy-type integrals
柯西型积分的主值
5)  Cauchy principal value integral
柯西主值积分
1.
We proves several conclusions on generalized Riemann integral and Lebesgue integral,Cauchy principal value integral and Lebesgue integral.
证明了广义Riemann积分与Lebesgue积分、柯西主值积分与Lebesgue积分关系的若干结论。
2.
In this paper, the Cauchy Principal Value integrals and the coefficients of free terms are computed directly, so the limit.
本文直接计算柯西主值积分和自由项系数,不但对于子域内包含的结点数目没有限制,而且避免了采用刚体位移法时的矩阵求逆运算。
6)  principal value of Cauchytype integrals
柯西型积分主值
补充资料:柯西中值定理

如果函数f(x)及f(x)满足:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导;

(3)对任一x∈(a,b),f'(x)≠0,

那么在(a,b)内至少有一点ζ,使等式

[f(b)-f(a)]/[f(b)-f(a)]=f'(ζ)/f'(ζ)成立。

柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条