说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 积分的第一中值定理
1)  first mean value theorem for integrals
积分的第一中值定理
2)  the first mean value theorem for definite integrals
定积分第一中值定理
1.
In this paper,we prove the first mean value theorem for definite integrals newly,introduce some betterment with its applications of the first mean value theorem for definite integrals.
本文重新表述了定积分第一中值定理的证明,并改进了该定理,对于改进了的定积分第一中值定理还给出了证明及一些应用实例。
3)  the first integral mean value theorem
积分第一中值定理
1.
Using variable upper limit integration and Lagrange mean value theorem,this article proves the first mean value theorem under the same condition and give several spread of the first integral mean value theorem.
在条件完全相同的情况下改进积分第一中值定理,并利用变上限积分函数和拉格郎日中值定理证明该定理,并给出积分第一中值定理的几个推广。
2.
In this paper, the first integral mean value theorem is im proved under the same conditions.
对积分第一中值定理在完全相同的条件下进行了改进和加强 ,并给出了应用举例 。
4)  the first mean value theorem of integral
积分第一中值定理
1.
Two kinds of generalizations of the first mean value theorem of integral for integrable functions with different properties are established in the paper,the results extend the previous conclusions.
本文建立了两类可积函数的积分第一中值定理的推广形式,推广了已有结论。
2.
The continuity condition is weakened to the condition with intermediate value property in the first mean value theorem of integral,the generalized versions of the first mean value theorem of integral for functions with intermediate value properties are established.
将积分第一中值定理中的连续性条件减弱为有介值性,建立了具有介值性质的可积函数的积分第一中值定理的推广形式。
5)  the first mean value theorem for integrals
第一积分中值定理
1.
The author discussed analyzing property on the "middle point" of the first mean value theorem for integrals and the promoted first mean value theorem for integrals by adding conditions,and proved the "middle point" is continuous and differential.
研究了第一积分中值定理"中值点"ξ和推广的第一积分中值定理"中值点"ξ的分析性质,证明了ξ具有连续性和可导性。
2.
In this paper, we discuss the inverse problem of the first mean value theorem for integrals and (approachability) in the inverse problem.
讨论第一积分中值定理的逆问题及其渐近性。
6)  the generalized first integral mean value theorem
广义第一积分中值定理
1.
In this paper,the first integral mean value theorem and the generalized first integral mean value theorem are improved in traditional teaching materials.
文章针对传统教材中的“第一积分中值定理”和“广义第一积分中值定理”进行了改进,通过列举若干典型题目,应用改进后的定理简明扼要的处理了这些问题。
补充资料:柯西中值定理

如果函数f(x)及f(x)满足:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导;

(3)对任一x∈(a,b),f'(x)≠0,

那么在(a,b)内至少有一点ζ,使等式

[f(b)-f(a)]/[f(b)-f(a)]=f'(ζ)/f'(ζ)成立。

柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条