1) nilpotent length
幂零长
1.
In this paper,we use n 1(G)=|{χ|χ∈ Irr( G),χ(1) is a composite number }| and n 2(G)=|{χ(1)|χ∈ Irr (G),χ(1) is a composite number }| to evaluate the nilpotent length of G , respectively.
用n1(G)=|{χ|χ∈Irr(G),χ(1)为合数}|和n2(G)=|{χ(1)|χ∈Irr(G),χ(1)为合数}|分别对G的幂零长进行了估计。
2) nilpotent
[英][nil'pəutənt] [美][nɪl'potənt]
幂零
1.
A Certain Kind of the Non-degenerate Nilpotent Lie Algebras on C;
复数域C上的一类非退化幂零李代数
2.
In this paper,the author has obtained: locally nilpotent S~* p -groups are nilpotent and some other nilpotent properties .
在局部幂零条件下研究了S*(p)-群,得到了S*(p)-群的幂零性。
3.
The properties of Δ-operator nilpotent and *──operatof idemoptent play an important role in N(2, 2, 0) algebras.
研究了它的基本性质;初步探讨了关于△运算幂零和*运算幂等的N(2,2,0)代数的特性;证明了;△运算幂零时,(S,△,0)构成一个结合的BCI-代数;*运算幂等时,(S,*,△,0)合一问题是不可判定的。
3) nilpotency
['nil,pəutənsi]
幂零
1.
In this paper we introduce a concept nilpotency between strongly nilpotency and nil and study the radical determined by nilpotency.
本文在Γ-环中导入一个介于强幂零和诣零之间的概念:幂零,然后研讨由幂零确定的根。
2.
The solvability and nilpotency of Novikov algebras are discussed.
讨论了Novikov代数的幂零性和可解性,得到了可解理想之和可解,可解Novikov代数的子代数和同态象可解等结论,以及与之相联系的李代数的可解幂零性的关系。
4) nilpotent group
幂零群
1.
The fixed points of nilpotent group s action on dendrite;
幂零群在dendrite上作用的不动点
2.
Hypercenter of minimal subgroups and nilpotent group;
极小子群的超中心性与幂零群
3.
Some necessary and sufficient conditions of nilpotent group were given.
利用弱拟正规子群的概念,本文得到了关于有限群的幂零性的一些新刻画,给出了幂零群的一些充要条件。
5) p-nilpotent
p-幂零
1.
On p-nilpotent Groups and Metabelian Groups;
关于p-幂零群和亚循环群
2.
Weakly C-normal Subgroups and p-nilpotent Groups;
弱C-正规子群与p-幂零群
3.
In this paper, we study the structure of finite group G by using of the quasinormality of subgroups, condition and obtain some sufficient conditions for a group belonging to p-nilpotent groups and p-superslovable groups.
对任意有限群G,我们利用子群的S-拟正规性刻划群G的结构,给出G为p-幂零群和p-超可解群的若干充分条件。
6) locally nilpotent
局部幂零
1.
In this paper,the author has obtained: locally nilpotent S~* p -groups are nilpotent and some other nilpotent properties .
在局部幂零条件下研究了S*(p)-群,得到了S*(p)-群的幂零性。
补充资料:幂零Lie代数
幂零Lie代数
Lie algebra, nilpotent
幂零lie代数【liealgebI’a.浦训t即t;瓜朋~。代Hm明盯e6Pal 域k上满足下列等价条件之一的代数(司罗bla)g: l)有g的理想的有限降链{9.}。“、。,使得g。=g,g。={o},且对o簇i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条