说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> π-幂零
1)  π-nilpotent
π-幂零
2)  π-nilpotent group
π-幂零群
1.
giving many necessary and sufficient conditions of π-nipotent groups, and obtaining the relevant charaterizations of π-nilpotent groups by introduction to the relevant chardcteristic subgroups π-hypercenter and π-nilpotent residual.
本文给出了π-幂零群的若干刻划;引进了相关的特征子群π-超中心和π-幂零剩余,得到了π-幂零相应的特征性质;特别讨论了内、外π-幂零群的结构,获得了有意义的结果,最后讨论了π-Abel群。
3)  upper π nilpotent series
上π-幂零列
1.
In this paper, the upper π nilpotent series and the lower π nilpotent series of finite groups are introduced, and one necessary and sufficient condition for a finite group to be a π soluble group is obtained.
通过建立上π-幂零列和下π-幂零列,得到了判别有限群为π-可解群的一个充要条件。
4)  lower π nilpotent series
下π-幂零列
1.
In this paper, the upper π nilpotent series and the lower π nilpotent series of finite groups are introduced, and one necessary and sufficient condition for a finite group to be a π soluble group is obtained.
通过建立上π-幂零列和下π-幂零列,得到了判别有限群为π-可解群的一个充要条件。
5)  locally π-nilpotent group
局部π-幂零
6)  π-quasinilpotent group
π-拟幂零群
1.
In this paper,with defination and properties of π-quasinilpotent group in ,some sufficient conditions for the solvable and supersolvable group are obtained and a conclusion is developed.
在参考文献[1]中π-拟幂零群的定义和性质下,利用其子群的π′-正规性来得到可解及超可解的充分条件,并推广了参考文献[1]的一个结论。
2.
Based on normality of Sylow subgroups of finite group, in [1] the author gave the definition of π-quasinilpotent group, and obtained the properties and some sufficient conditions with π -quasinormolity of its subgroups, and discussed the relationship between π - quasinilpotent group and supersolvable group.
[1]借助有限群的Sylow子群的正规性给出π-拟幂零群的概念,并利用子群的π-拟正规性得到π-拟幂零群的性质及几个充分条件,也探讨了π-拟幂零群与超可解群的关系。
3.
In this paper, we obtain some sufficient conditions for supersolvability of finite groups with the properties of the π-quasinilpotent group.
本文利用 π-拟幂零群的性质得到了有限超可解群的若干充分条
补充资料:幂零Lie代数


幂零Lie代数
Lie algebra, nilpotent

幂零lie代数【liealgebI’a.浦训t即t;瓜朋~。代Hm明盯e6Pal 域k上满足下列等价条件之一的代数(司罗bla)g: l)有g的理想的有限降链{9.}。“、。,使得g。=g,g。={o},且对o簇i1,则其换位子理想的余维数codim【g,g」》2.特别地,如果dinlg簇2,则g是交换的.唯一的非交换的三维幂零Lie代数g同构于n(3k).对于几个小维数(当k=C,对于dinig续7)幂零Lie代数已经开列出来,但仍然没有它们分类的一般途径(1989). 幂零Lie代数(早期,它们被称为特殊Lie代数(51不戈诫Liea】罗b几璐)或O阶Lie代数)在5 .Lie关于微分方程积分方法研究的第一阶段就已经遇到了.可解lie代数(L记al罗bra,501铂b】e)的分类在一定意义下归结为枚举幂零Lie代数.在任意有限维Lie代数中都有一个最大的幂零理想(【21的术语,诣零根(成mdical)).另一个幂零理想也被考虑了—不可约的有限维表示的核的交集(幂零根,亦见lie代数的表示(rePn乏ellta-tion of a Lie algebm))(见【11,【4」).如果r是代数g的根,则幂零根n与 汇g,:]=[g,g]自r重合.商代数g/n是约化的(见约化块代数(玩司罗-腼,阁ucti祀)),并且n是有此性质的最小的理想.如果chark=O,则诣零根由所有使得adx幂零的x〔T组成. 研究C上约化Lie代数g,自然提出幂零子代数,它们是抛物子代数(parabelic su加】罗bra)的幂零根.当g=gI(V)时,这些幂零子代数与上面考虑过的子代数n(F)重合.9的一个Borel子代数(见Borel子群(Borel subgrouP))是g的一个由幂零元组成的极大子代数,不计共扼意义下是唯一的.更广的一类幂零L记代数由g的抛物子代数的由幂零元素组成的任意理想形成.当g=叭(V)时,这些幂零Lie代数已在【6]中被分类〔标准诣零代数〔standa记nila」geb闭)),而一般情形下在【7」中. 一个幂零Lie代数的中心必是非平凡的,而任意一个幂零Lje代数均可由幂零代数的中心扩张列得到.幂零Lie代数类关于子代数、商代数、中心扩张、有限直和是封闭的.特别地,n(n,k)的任意子代数是幂零的.反之,任意一个有限维幂零Lie代数必然同构于n(m,k)的一个子代数,对某个m(如果chark=0);这是八d。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条