说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非散度型抛物方程
1)  Nondivergent parabolic equations
非散度型抛物方程
2)  non-divergence quasilinear parabolic equation
非散度型拟线性抛物型方程
1.
The existence of classical solutions to non-divergence quasilinear parabolic equation of second order has been proved by basic knowledge of non-linear functional analysis and implicit function theorem in banach spaces.
用非线性泛涵分析的基本知识和Banach空间上的隐函数定理证明了非散度型拟线性抛物型方程古典解的存在性。
3)  linear parabolic eqautions of divergence form
散度型线性抛物方程
4)  non linear parabolic equations/reaction diffusion systems
非线性抛物型方程/反应扩散系统
5)  coupled parabolic equation dispersion problem
耦合型抛物方程弥散项
6)  parabolic reaction-diffusionequation
抛物型反应-扩散方程
补充资料:抛物型偏微分方程
抛物型偏微分方程
parabolic type,partial differential equation of

   偏微分方程的一类。最典型的是热传导方程
   !!!P0137_1a>0)  (1)基本解是点热源的影响函数。若在t=0时在(ξ,η,ζ)处给定单位点热源,即u0x0y0z0,0)=δ(ξ,η,ζ)(δ为狄拉克函数),则当t>0时便引起在R3的温度分布,这就是基本解。用傅里叶变换可得到它的表达式!!!P0137_2
    !!!P0137_3
    热传导方程初值问题的解可用基本解叠加而成,即!!!P0137_4的解为!!!P0137_5!!!P0137_6
   极值原理:一个内部有热源的传导过程,它的最低温度一定在边界上或初始时刻达到。更强的结论是 :如果tT时在Ω内某一点达到最低温度 ,则在这个时刻以前(tT时)u≡常数  ;又:若最低温度在tT时边界Ω上某点P达到,则在这点上!!!P0137_7PΤ<0(n为外法线方向)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条