1) Cauchy-BinetTheorem
Cauchy-Binet定理
2) Binet-Cauchy formula
Binet-Cauchy公式
1.
Three points of application of Binet-Cauchy formula;
Binet-Cauchy公式的三则应用
2.
his article,based on article[1],gives a general formula of generalized determinant of matrix product so as to develop the Binet-Cauchy formula.
文章在参考文献[1]的基础上,给出了矩阵乘积的广义行列式的一般公式,推广了Binet-Cauchy公式和行列式乘法定理。
3.
This article,base d on article 1 ,gives a general formula of generalized determinant of matrix product so a s to develop the Binet-Cauchy formula.
本文在文犤1犦的基础上,给出了矩阵乘积的广义行列式的一般公式,推广了Binet-Cauchy公式。
3) Cauchy Kowalewsky theorem
Cauchy-Kowalewsky定理
4) Cauchy-Peano theorem
Cauchy-Peano定理
1.
By use of anti-cases,it has been proved that the limitations of well-known Cauchy-Peano theorem in abstract spaces.
通过反例,证明了著名的Cauchy-Peano定理在抽象空间中具有一定的局限性。
5) Cauchy Theorem
Cauchy定理
1.
We research careflly on the function used in the proving of Mean Value Theorem and Cauchy Theorem and we found that we can give another theorem which need less condition and correspondently we can use it to reach the result that we need in the proving of L Hopital s Rule without the strict condition needed before, and thus we can widen the area where L Hopital s Rule works.
尤其通过选择新的辅助函数减弱了Cauchy定理的条件,推广了Cauchy定理并相应在L'hopital法则的定理证明中减弱了定理的适用条件,随之推广了L'hopital法则,可以使用L'hopital法则求取更多未定式形式的极限。
2.
Estermann’s proof of expanded Cauchy theorem.
给出了推广的Cauchy定理的Th。
3.
We obtain Cauchy theorem 、Morera theoremand extension theorem for this function .
首先,在复平面上讨论k正则函数(即(?)~kW/(?)~k=0的解)的Cauchy定理、Morera定理、透弧延拓定理,利用这些性质和它的Plemelj公式来研究k正则函数的Riemann边值问题,并给出一类k正则函数的Riemann边值逆问题的数学提法,将之转化为Riemann边值问题来处理。
6) Cauahy-Kowalevskaja theorem
Cauchy-Kowalevskaja定理
补充资料:Cauchy-Hadamard定理
Cauchy-Hadamard定理
Caudly-Hadamard theorem
Cau由y一Had别ma川定理【Cau由y一Had别rna川也e洲,m;心山“一劫aMaPareoPe”a} 考虑复幂级数 ./丫二卜艺〔决(:一u,·(l) 趾二飞并且设 八习叹s叩(、尸.(2)如果八二‘、则级数(L、仅在点:一u上收敛,如果0<八<戈,则级数(l)在圆盘比一川
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条