1) bilinear formula of the same power
双线性齐式
2) homogenous bilienar recurrent relation
齐双线性递推式
3) inhomogeneous quasilinear hyperbolic system
非齐次拟线性双曲组
1.
Under the assumption that the inhomogeneous term satisfies the matching condition,we obtain a necessary and sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solutions to the Cauchy problem with a kind of non-smooth initial data for inhomogeneous quasilinear hyperbolic systems.
本文考虑一阶非齐次拟线性双曲组具有一种非光滑初始数据的Cauchy问题。
4) homogeneous linear
齐次线性
1.
general term formula is a important path to research and study number sequence problem,a tentative study of constant coefficients homogeneous linear recurrent number sequence general term formula,give two theorem to dispose of general ter m formula.
对常系数齐次线性递归数列的通项公式进行初步的探讨 ,给出求解通项公式的两个定
5) linear-fractional homogeneous functions
分式线性齐次函数
6) bilinear form
双线性形式
1.
Starting from two line solitons;the solution of integrable (2+1)-dimensional mKdV equation in bilinear form yields a dromion solution that is localized in all directions for a suitable potential.
从两个线孤子解出发 ,可以得到双线性形式 2 +1维mKdV方程的某个势函数的dromion解。
2.
This paper summarizes briefly the bilinear operator, its property, and some bilinear forms of nonlinear equations.
简要地总结了双线性算子及其主要性质和一些非线性方程的双线性形式 ,并对部分非线性偏微分方程如何变换成双线性形式进行了探讨 ;尤其是对近年来倍受关注的差分微分方程的双线性形式也进行了一些讨
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条