1) bilinear matrix inequality(BMI)
双线性矩阵等式
2) bilinear matrix inequalities
双线性矩阵不等式
1.
Therein the optimizing the upper bound of the performance can be expressed as a problem of bilinear matrix inequalities(BMI) in which the feedback gain is taken as the optimization parameters,and the seeking the lower bound is a semidefinite programming problem based on the linear matrix inequalities(LMI).
其中性能上界的优化是一组以反馈增益为寻优参数的双线性矩阵不等式(bilinearmatrix inequalities,BM I)问题,而性能下界是一组基于线性矩阵不等式(linearmatrix inequalities,LM I)的半正定规划问题。
2.
The design problem can be reduced to a feasibility problem of a set ofbilinear matrix inequalities(BMIs).
该文研究了 Takagi-Sugeno 模糊模型的部分状态反馈控制问题,设计问题可以归结为求解一组双线性矩阵不等式。
3.
It is shown that the α-stability condition for closed-loop uncertain piecewise linear systems can be cast as a set of bilinear matrix inequalities (BMI) problem which can be solved by chaos optimization algorithm.
将闭环系统的α稳定的极点配置问题转化成一组双线性矩阵不等式(bilinear matrix inequalities,BMI)的求解问题,对BMI问题采用混沌优化算法进行求解。
3) bilinear matrix inequality approach
双线性矩阵不等式方法
4) bilinear matrix inequality
双线性矩阵不等式
1.
H_∞-infinity discrete time fuzzy controller design based on bilinear matrix inequality
基于双线性矩阵不等式的H_∞无穷离散时间模糊控制器设计(英文)
2.
With bilinear matrix inequality (BMI), linear matrix inequality (LMI) and matrix analysis as tools, this paper attempts to study the fault-tolerant control problems for a class of linear continuous-time systems with multi-index constraint and .
本文采用双线性矩阵不等式(BMI)、线性矩阵不等式(LMI)、矩阵分析等工具,对多指标约束下的容错控制进行研究,并提出求解期望输出反馈容错控制增益的有效迭代算法。
5) BMI
双线性矩阵不等式
1.
Upon the proposed performance criterion, a sufficient condition for the existence of robust H 2 /H∞ state feedback controller was derived in terms of bilinear matrix inequality (BMI ).
基于该性能准则,推导出鲁棒H2/H∞状态反馈控制器存在的充分条件,并以双线性矩阵不等式(BMI)的形式给出。
2.
The dynamics of generated residual is formulated as non-convex and in terms of bilinear matrix inequality (BMI).
针对线性时不变动态系统,构建一个由输出观测器和后滤波器组成的故障检测滤波器,将其残差动态特性描述为非凸的双线性矩阵不等式形式。
3.
Fault-Tolerant Controller Design for Linear Systems: a BMI Approach;
利用双线性矩阵不等式(BMI)给出了线性系统对于执行器失效具有完整性的充分必要条件并得到一个叠代最优算法求相应的容错控制律,所给的例子验证了本文提出的算法的有效性。
6) biaffine matrix inquality (BMI)
双线性矩阵不等式(BMI)
补充资料:双矩阵对策
双矩阵对策
bimatrix game
双矩阵对策【bi.洲xg~;6HMaTp~a,附,〕 一种两个局中人之间的有限非合作对策(n on-。。。详rative乎me).双矩阵对策是由两个维数同为mx。的矩阵A=lla,jll和B=”气11给定的;这两个矩阵分别是局中人I和n的支付矩阵(或增益矩阵).局中人工的策略是矩阵的行的选择,而局中人n的策略是列的选择.如果局中人工选取i(l(i(m),局中人fl选取j(l(j‘。),那么他们的支付(增益)将是分别a。和鸟;如果a,’十气=o对于所有i,j成立,那么双矩阵对策就变为矩阵对策(m atrix乎me).双矩阵对策理论是非合作对策一般理论中的最简单的分支,但是即使是双矩阵对策,也并非总是Nash意义下可解的或强可解的.有各种算法可用来求得双矩阵对策的平衡解:有描述产生平衡解集的所有极值点的A,B的子矩阵的方法(【l],[2]);也有把求双矩阵对策的平衡解的问题归结为二次规划(叫此atic Programming)问题的方法([3],[4],【5]).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条