1) harmonic and bi_harmonic functions
调合及重调和函数
2) Pluriharmonic function
多重调和函数
3) plurisubharmonic function
多重次调和函数
4) harmonic function
调和函数
1.
Integral Representation and Estimation of Harmonic Functions in Half-Plane;
半平面中调和函数的积分表示和估计
2.
The Dirichlet boundary value problem for harmonic function;
调和函数的Dirichlet边值问题
5) A-harmonic functions
A-调和函数
1.
Then,we further obtain that each bounded weak solution is of sharp Hlder exponent with anyγ:0≤γ<k under the additional data regularity assumptions,where k is just as the local Hlder index of A-harmonic functions.
利用Moser-Nash迭代和稠密引理,得到了在自然增长下的非线性退化椭圆方程有界弱解具有某一Hlder指数的正则性;在已知数据的进一步正则性下,建立了具有任意γ满足0≤γ<κ的优化Hlder连续性指数,其中κ是A-调和函数的局部Hlder连续指数。
6) harmonic functions
调和函数
1.
karp to prove that on such kind of 2 Mfd which curvature k≥-1r 2 log r outside a compact set there exist no nonconstant subharmonic functions which bounded f.
Karp的方法证明:在某个紧致集外满足曲率k≥-1r2logr的二维流形上不存在有上界的非常值下调和函数。
2.
In this paper, applying Life theory of complex-functional, not only the space harmonic functions in polynomial form but also the spherical functions are obtained.
本文以泛复变函数为工具,成功地构造出多项式型空间调和函数族,通过坐标变换和正交化过程,进而又获得了球函数。
3.
It is proved for harmonic functions an integral identity.
本文推导出调和函数的一个积分恒等式,并把这个结果推广到方程△_pu=0(P>1)的解的情形。
补充资料:调和函数
调和函数 harmonic function 在平面区域D上定义的函数u=u( x,y),若有二阶连续偏导数,且满足二阶拉普拉斯方程则称u=u(x,y)为D上的调和函数。调和函数与解析函数有密切关系 ,在平面区域D上的解析函数的实部与虚部都是调和函数,由于这一对调和函数还满足柯西黎曼条件,因而特别称虚部是实部的共轭调和函数。反之一个单连域上的调和函数一定可以是一个单值解析函数的实部,而且这样的解析函数不唯一,它们相互之间可以相差一个纯虚数,而在多连通区域上,一个调和函数一般是一个多值解析函数的实部。u(x,y)是区域D上调和函数的充要条件是u(x,y)在区域D连续且对D内任意一点P(x,y),存在正实数rp,对所有正数r<rp有其中cr是以 P(x,y)为心,r为半径的圆,是u(x,y)沿cr法向的导数,当u(x,y)是一个圆盘△上的调和函数,且在上连续时,则u(x,y)在D内任一点的值可表为积分公式: 说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|
|
©2011 dictall.com |