说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 向量值算子
1)  vector valued operator
向量值算子
2)  vector-valued maximal operators
向量值极大算子
3)  vector-valued sublinear operators
向量值次线性算子
1.
In this paper,the author establishes the strong and weak type norm inequalities for a vector-valued sublinear operators on the weighted Herz-Morrey spaces;using this,the author obtains the inequalities for a class of singular operators defined on Rn which include the Calderon-zygmundoperators as special cases.
研究了向量值次线性算子在Herz-Morrey空间及弱Herz-Morrey空间上的加权有界性,得到了一大类定义在Rn上的算子向量值不等式。
4)  vector operator
向量算子
1.
This paper gives the vector operator roots of the matrix equation ∑=F∑F′+Q by means of the matrix s Kronecker product and vector operator vec.
以矩阵的克罗内克积和向量算子vec作为工具,给出了矩阵方程∑=F∑F′+Q的向量算子闭式解。
5)  operator-valued random variable
算子值随机变量
6)  positive operator-valued measure(POVM)
正算子值测量(POVM)
补充资料:特征值和特征向量
特征值和特征向量
characteristic value and characteristic vector
    数学概念。若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩  σx)=aζ  ,则称x是σ的属于a的特征向量  a称为σ的特征值。位似变换σk(即对V中所有a,有σka)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θπ)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。若An阶方阵,In阶单位矩阵,则称xIAA的特征方阵,xI-A的行列式 |xIA|展开为xn次多项式 fAx)=xn-(a11+…+annxn-1+…+(-1)nA|,称为A的特征多项式,它的根称为A的特征值。若λ0A的一个特征值,则以λ0IA为系数方阵的齐次方程组的非零解x称为A的属于λ的特征向量:Ax=λ0x。L.欧拉在化三元二次型到主轴的著作里隐含出现了特征方程概念,J.L.拉格朗日为处理六大行星运动的微分方程组首先明确给出特征方程概念。特征方程也称永年方程,特征值也称本征值、固有值。固有值问题在物理学许多部门是重要问题。线性变换或矩阵的对角化、二次型化到主轴都归为求特征值特征向量问题。每个实对称方阵的特征根均为实数。A.凯莱于19世纪中期通过对三阶方阵验证,宣告凯莱-哈密顿定理成立,即每个方阵A满足它的特征方程,fA(A)=An-(a11+…+ann)An-1+…+(-1)nAI=0。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条