1) vector operation and taylor series
向量算子及级数
2) operator series
算子级数
1.
Vector-valued multiplier convergence of operator series;
算子级数的向量值乘数收敛(英文)
2.
A theorem on uniform convergence of operator series;
关于算子级数赋值一致收敛的一个定理
3.
The characteristic of c0(X)-evaluation uniform convergence of operator series is obtained in this paper.
给出了(X,L(X,Y))中算子级数的c0(X)-赋值一致收敛的特征。
3) series operator
级数算子
1.
For a series operator T with a symmetric and homogemecus rernel k(m, n) defined by T{an}= Σ_(n=1)~∞ K(m,n)an, {an}∈lω(n), lw(n) = {{an} | an≥0, Σ_(n=1)~∞ ω(n).
对带对称齐次核K(m,n)的级数算子T:T{an}=Σ_(n=1)~∞ K(m,n)an,{an}∈lω(n),l={{an)| an≥0,Σ_(n=1)~∞ω(n)an<+∞},本文研究了T的范数刻画,并讨论其应用。
4) vector operator
向量算子
1.
This paper gives the vector operator roots of the matrix equation ∑=F∑F′+Q by means of the matrix s Kronecker product and vector operator vec.
以矩阵的克罗内克积和向量算子vec作为工具,给出了矩阵方程∑=F∑F′+Q的向量算子闭式解。
5) Order of Magnitude Estimate
数量级估算
6) vector valued operator
向量值算子
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条