1) generalized regular functions
广义正则函数
1.
In this paper, by using the properties of quasi-permutations, the author obtainsa necessary and sufficient condition for generalized regular functions in real Clifford analysis.
本文应用拟置换的性质,得到了实Clifford分析中广义正则函数的充分必要条件。
2) generalized k-regular
广义k-正则函数
1.
A Riemann boundary value problem and its inverse problems for a class of generalized k-regular functions in Clifford analysis;
Clifford分析中一类广义k-正则函数的Riemann边值问题和Riemann边值逆问题
3) generalized biregular function
广义双正则函数
1.
This paper discusses generalized biregular function in Clifford analysis and it s nonlinear boundary value problem with Haseman shift, and takes the problem to a integral equation problem by useing the method integral transformation.
本文研究Clifford分析中的广义双正则函数及其一类非线性带Haseman位移的边 值问题。
2.
In this paper, we consider generalized biregular functions in Clifford analysis and the nonlinear boundary value problem with conjugate value and a kind of shift, First, Plemelj formula is obtained, then with the help of integral equations and the Schauder fixedpoint theorem, we discuss the solvability for the boundary value problem
本文讨论实Clifford分析中广义双正则函数的带共轭值和带位移的非线性边值问 题,首先得到其Plemelj公式,然后用积分方程的方法和Schauder 不动点定理讨论了这个边值 问题的可解性
4) generalized regular function vectors
广义正则函数向量
1.
A linear boundary value problem with conjugate value and a kind of shift for a class of generalized regular function vectors in Clifford analysis;
Clifford分析中广义正则函数向量的带位移带共轭的线性边值问题
5) generalized biregular function vector
广义双正则函数向量
1.
First, we get the Plemelj formula for the generalized biregular function vectors.
首先得到了广义正则函数向量的 Plemelj公式 ,然后利用积分方程的方法和 Arzela- Ascoli定理 ,讨论了实 Clifford分析中广义双正则函数向量的带位移带共轭的非线性边值问题解的存在性 。
2.
With the help of integral equations and Schauder fixed pointed theorem,the existence of the solution and the integral expression of the solution to the nonlinear bonndary value problem with conjugation for the generalized biregular function vectors in Clifford analysis are considered.
利用积分方程的方法和Schauder不动点原理 ,讨论了实Clifford分析中广义双正则函数向量的带共轭值的非线性边值问题解的存在性及其积分表达式 。
3.
This paper considers a bonndary value problem with conjugate value and a kind of shift for generalized biregular function vectors in Clifford analysis.
本文讨论实 Clifford分析中广义双正则函数向量的带位移带共轭的边值问题 。
6) generalized orthogonal function
广义正交函数
1.
A generalized orthogonal function approach and model superposition principle is used to obtain the model responses and its derivatives,and the regularization technique is employed to stabilize the identified res.
求解汽车-桥梁系统耦合方程得到桥梁节点动力响应,由广义正交函数和模态叠加原理确定模态响应及其导数,用正则化方法得到稳定的识别结果。
补充资料:巨正则配分函数
其定义为:式中λ为乘因子,相当于粒子的绝对活度;n为巨正则系综中体系的粒子数;Qn为n个粒子体系的正则配分函数。巨正则配分函数与体系的热力学函数之间的关系为:
式中p为压力;V为体系的体积;k为玻耳兹曼常数;T为热力学温度;E为体系的能量。
在巨正则系综中,具有粒子数ni,能量Ei的体系出现的几率为:
式中N为总体系数;表示具有粒子数为ni,能量为Ei的体系数;W(ni,Ei)表示粒子数为ni,能量为Ei的体系的微观态数。
式中p为压力;V为体系的体积;k为玻耳兹曼常数;T为热力学温度;E为体系的能量。
在巨正则系综中,具有粒子数ni,能量Ei的体系出现的几率为:
式中N为总体系数;表示具有粒子数为ni,能量为Ei的体系数;W(ni,Ei)表示粒子数为ni,能量为Ei的体系的微观态数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条