1) B-valued random elements
B-值随机元
1.
In this paper, we study application of the small ball condition in the law of the iteratedn Logarithm with B-valued random elements, and we give some results of the law of the iterated Logarithm for i.
本文讨论小球条件在B-值独立同分布随机元迭对数律中的应用,并给出了B-值随机元迭对数律的一些结论。
2) B-valued random element
B值随机元
1.
Moment complete convergence for B-valued random elements;
B值随机元序列的矩完全收敛性
2.
Convergence for sequence of B-valued random elements;
B值随机元序列的收敛性
3.
The author proves, at first, that the convergence almost-everywhere for a sequence of B-valued random elements is equivalent to its convergence almost-uniformly and then, gives a theorem of Lusin–type declaring that every B-valued random element can be approximated almost uniformly by a sequence of continuous functions.
本文首先证明了B值随机元序列几乎处处收敛与几乎一致收敛的等价性,然后用它来证明一个关于连续函数逼近B值随机元的Lusin型定理。
3) B valued random vector
B值随机变元
4) arrays of random elements in Banach space
B值随机元阵列
1.
In this paper,the weak law of large numbers for arrays of random elements in Banach spaces under uniform intergrability in the Cesàro sence are investigated and geometrical characterization of Banach spaces are discribed.
在“Cesàro一致可积”系列条件下研究了 B值随机元阵列的弱大数定律 ,并刻划了Banach空间的几何特
5) Arrays of B-valued random element
B值随机元序列
6) Arrays of B-valued adapted random element
B值适应随机元阵列
补充资料:随机数和伪随机数
随机数和伪随机数
random and pseudo-randan numbers
随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条